Los videojuegos multijugador de arena de batalla en línea (MOBA), es un genero de videojuegos que durante la última década han ganado popularidad en la escena competitiva de los E-Sports. Este incremento en su popularidad y la complejidad propia de los mismos han llamado la atención de investigadores en todas las áreas del conocimiento, incluyendo la Inteligencia Artificial. Dichos investigadores han utilizado una amplia variedad de técnicas de Aprendizaje de Maquina buscando mejorar la experiencia de diversos usuarios -jugadores novatos, jugadores expertos, espectadores, entre otros- a través de modelos de predicción, sistemas de recomendación y, aunque se han utilizado técnicas de optimización; estas últimas han sido las menos utilizadas en los videojuegos tipo MOBA. Por ello, el presente trabajo de investigación propone la arquitectura de un agente racional capaz de recomendar a un jugador que objeto comprar para aumentar sus probabilidades de ganar una partida, utilizando una técnica de optimización para la generación de recomendaciones. En la arquitectura propuesta, el agente percibe su ambiente con la información disponible en el API del videojuego League of Legends -uno de los MOBA mas populares actualmente-. Tal información es interpretada por una Regresión Logística que durante las etapas tempranas del juego demostró tener una precisión alrededor de 0.975. A su vez, la técnica de optimización seleccionada para generar la sugerencia fue GRASP; en promedio cada sugerencia es generada en 0.36 segundos, estas sugerencias durante la experimentación lograron aumentar la probabilidad de ganar una partida en promedio 5.2x.