Show simple item record

dc.contributor.advisorBustacara Medina, Cesar Julio
dc.contributor.authorJuan Guillermo, López Guzmán
dc.date.accessioned2022-02-02T14:12:00Z
dc.date.accessioned2023-05-10T17:55:57Z
dc.date.available2022-02-02T14:12:00Z
dc.date.available2023-05-10T17:55:57Z
dc.date.created2021-12-13
dc.identifier.urihttps://hdl.handle.net/20.500.12032/96562
dc.description.abstractLos videojuegos multijugador de arena de batalla en línea (MOBA), es un genero de videojuegos que durante la última década han ganado popularidad en la escena competitiva de los E-Sports. Este incremento en su popularidad y la complejidad propia de los mismos han llamado la atención de investigadores en todas las áreas del conocimiento, incluyendo la Inteligencia Artificial. Dichos investigadores han utilizado una amplia variedad de técnicas de Aprendizaje de Maquina buscando mejorar la experiencia de diversos usuarios -jugadores novatos, jugadores expertos, espectadores, entre otros- a través de modelos de predicción, sistemas de recomendación y, aunque se han utilizado técnicas de optimización; estas últimas han sido las menos utilizadas en los videojuegos tipo MOBA. Por ello, el presente trabajo de investigación propone la arquitectura de un agente racional capaz de recomendar a un jugador que objeto comprar para aumentar sus probabilidades de ganar una partida, utilizando una técnica de optimización para la generación de recomendaciones. En la arquitectura propuesta, el agente percibe su ambiente con la información disponible en el API del videojuego League of Legends -uno de los MOBA mas populares actualmente-. Tal información es interpretada por una Regresión Logística que durante las etapas tempranas del juego demostró tener una precisión alrededor de 0.975. A su vez, la técnica de optimización seleccionada para generar la sugerencia fue GRASP; en promedio cada sugerencia es generada en 0.36 segundos, estas sugerencias durante la experimentación lograron aumentar la probabilidad de ganar una partida en promedio 5.2x.spa
dc.formatPDFspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherPontificia Universidad Javerianaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAgente racional
dc.subjectVideojuegos
dc.subjectAprendizaje de máquina
dc.subjectOptimización
dc.titleArquitectura de un Agente Racional para recomendar que objetos comprar en un videojuego tipo MOBAspa


Files in this item

FilesSizeFormatView
2630.pdf1.042Mbapplication/pdfView/Open
2631.pdf192.1Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP