Toggle navigation
Repositório da Associação das Universidades Confiadas a Compañía de Jesús na América Latina
español
português (Brasil)
English
português (Brasil)
español
português (Brasil)
English
Entrar
Toggle navigation
Ver item
Página inicial
Centro Universitario FEI
Documentos - CUFEI
Ver item
Página inicial
Centro Universitario FEI
Documentos - CUFEI
Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression
Visualizar/
Abrir
Data
2015
Autor
Sato J.R.
Moll J.
Green S.
Deakin J.F.W.
Thomaz C.E.
Zahn R.
Metadata
Mostrar registro completo
URI
https://hdl.handle.net/20.500.12032/89698
Descrição
© 2015 Published by Elsevier Ireland Ltd.Standard functional magnetic resonance imaging (fMRI) analyses cannot assess the potential of a neuroimaging signature as a biomarker to predict individual vulnerability to major depression (MD). Here, we use machine learning for the first time to address this question. Using a recently identified neural signature of guilt-selective functional disconnection, the classification algorithm was able to distinguish remitted MD from control participants with 78.3% accuracy. This demonstrates the high potential of our fMRI signature as a biomarker of MD vulnerability.
Collections
Documentos - CUFEI
Buscar DSpace
Esta coleção
Navegar
Todo o repositório
Comunidades e Coleções
Por data do documento
Autores
Títulos
Assuntos
Esta coleção
Por data do documento
Autores
Títulos
Assuntos
Minha conta
Entrar
Cadastro