Mostrar registro simples

dc.contributor.authorViveros-Wacher, Andrés
dc.contributor.authorRayas-Sánchez, José E.
dc.contributor.authorBrito-Brito, Zabdiel
dc.date.accessioned2019-08-29T20:09:44Z
dc.date.accessioned2023-03-16T20:08:57Z
dc.date.available2019-08-29T20:09:44Z
dc.date.available2023-03-16T20:08:57Z
dc.date.issued2019-06
dc.identifier.citationA. Viveros-Wacher, J. E. Rayas-Sánchez and Z. Brito-Brito, "Analog Gross Fault Identification in RF Circuits Using Neural Models and Constrained Parameter Extraction," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 6, pp. 2143-2150, June 2019. doi: 10.1109/TMTT.2019.2914106es
dc.identifier.issn0018-9480
dc.identifier.urihttps://hdl.handle.net/20.500.12032/72463
dc.descriptionThe demand and relevance of efficient analog fault diagnosis methods for modern RF and microwave integrated circuits increases with the growing need and complexity of analog and mixed-signal circuitry. The well-established digital fault diagnosis methods are insufficient for analog circuitry due to the intrinsic complexity in analog faults and their corresponding identification process. In this work, we present an artificial neural network (ANN) modeling approach to efficiently emulate the injection of analog faults in RF circuits. The resulting meta-model is used for fault identification by applying an optimization-based process using a constrained parameter extraction formulation. A generalized neural modeling formulation to include auxiliary measurements in the circuit is proposed. This generalized formulation significantly increases the uniqueness of the faults identification process. The proposed methodology is illustrated by two faulty analog circuits: a CMOS RF voltage amplifier and a reconfigurable bandpass microstrip filter.es
dc.language.isoenges
dc.publisherIEEEes
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes
dc.subjectAnalog Faultses
dc.subjectArtificial Neural Networks (ANN)es
dc.subjectGross Faultses
dc.subjectFault Identificationes
dc.subjectFault Injectiones
dc.subjectParameter Extractiones
dc.titleAnalog Gross Fault Identification in RF Circuits using Neural Models and Constrained Parameter Extractiones
dc.typeinfo:eu-repo/semantics/articlees


Arquivos deste item

ArquivosTamanhoFormatoVisualização
Viveros_19Jun_A ... by_ANN-n_PE_Author_ver.pdf1.007Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP