A class of predefined-time stabilizing controllers for nonholonomic system
Date
2019-07Author
Jiménez-Rodríguez, Esteban
Sánchez-Torres, Juan D.
Muñoz Vázquez, Aldo J.
Defoort, Michael
Loukianov, Alexander
Metadata
Show full item recordDescription
The design of a class of predefined-time stabilizing controller for a class uncertain nonholonomic systems in chained form is investigated in this paper. First, some modifications to the classical fixed-time algorithms for first and second order systems are introduced. These modified algorithms, which are developed under the concept of predefined-time stability, reduce the settling time overestimation drawback suffered by the classical fixed-time algorithm. Unlike current finite-time and fixed-time schemes, an upper bound of the settling time is easily tunable through a simple selection of the parameters of the controllers. Then, based on the developed first and second-order algorithms, a switching control strategy is designed to guarantee the predefined-time stability of the chained-form nonholonomic system. Finally, a simulation example is presented to show the effectiveness of the proposed method.ITESO, A.C.