Remoção de matéria orgânica em lixiviado de aterro sanitário utilizando contactor biológico rotatório
Visualizar/ Abrir
Data
2013-01-31Autor
Santos, Vanessa Schweitzer dos
Metadata
Mostrar registro completoDescrição
The sanitary landfill leachate is an effluent generated by infiltration of rainwater into the layers of the landfill cover and biodegradation of the organic fraction of municipal solid waste grounded. It is characterized by a high pollution potential and high concentrations of organic matter, so their collection and further treatment is needed. Biological systems can be applied in their treatment in order to remove organic matter and nutrients through the metabolic activity of micro-organisms involved in the process. The rotating biological contactors are cylindrical reactors having inside support means, which acts fixed biomass in the form of biofilm. This comes into contact with the substrate by mechanical rotation of the cylindrical drum in the effluent. This research aimed to study the capacity of organic matter removal of landfill leachate, through the use of a rotating biological contactors. The landfill leachate São Leopoldo/RS was treated by a three-stage rotating biological contactor, which was operated in two modes. One was a flow rate of 8.5 L/h hydraulic retention time of 15 h (Phase 1). In this mode of operation the load influent organic average was 434 mg/L of BOD (limits between 304 mg/L and 576 mg/L), 2484 mg/L COD (limits between 882 mg/L and 3617 mg/L) and 992 mg/L of TOC (limits between 405 mg/L and 1420 mg/L). The other operation mode tested had a flow rate of 5.1 L/h and hydraulic retention time of 24 h (Phase 2). The average influent organic load was 500 mg/L of BOD (limits between 325 mg/L and 580 mg/L), 3818 mg/L COD (limits between 2647 mg/L and 4764 mg/L) and 1250 mg/L TOC (limits between 940 mg/L and 1360 mg/L). The researched showed landfill leachate as main characteristic the low biodegradability, and wide variation in composition throughout the experiment, especially in Phase 1. This variation in composition may have affected the removal efficiency of organic matter, which were 50% BOD, 11% COD and 13% TOC in Phase 1. In Phase 2 affluent values remained more similar, and the removal rates of organic matter were more constant, and that the average values of removal efficiency was higher than those observed in Phase 1. The removal efficiencies in Phase 2 were 66% BOD, 15% COD and 18% TOC. The increase in Phase 2 hydraulic retention time resulted in increased efficiency of removal of organic material. This effect is probably associated with greater contact time between the substrate and the biomass available in the landfill leachate. As for the removal of organic matter at different stages of rotating biological contactor, greater efficiency was observed in the first two stages of the system, particularly the parameters of COD and TOC in both phases monitored. For leachate and operating modes tested, stage 3 showed no efficiency to justify their presence, for the parameters COD and TOC.CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico