Potencial de desenvolvimento de biocombustível produzido a partir de bio-óleo da pirólise de papel moeda descartado
Descripción
The intense generation of municipal solid waste combined with a marked expansion of energy consumption, is presented as one of the greatest environmental challenges. For solid waste, factors such as management difficulties, chemical nature of the waste and its complexity drive the search for clean technologies and hence solutions that meet the society. This study applied pyrolysis technology to convert paper money droppedin order to assess the development potential of biofuel produced from bio-oil generated in the pyrolytic process. The residue of paper currency was characterized by immediate analysis, thermogravimetric (TGA) and X-ray fluorescence (XRF). Pyrolytic reactor experiments were conducted in vacuum, at a temperature of 500 ° C and evaluated yields of bio-products generated. The bio-oil was characterized by parameters of pH, water content, flash point, electrical conductivity, acidity, number of cetane, heat and power metal analysis by FRX. The surfactant propylene glycol, showed a temperature of 25 ° C a stabilization time of 107s + 12, Tween 20 + 8 about 57s and 48s glycerin monostearate + 11. Binary mixtures of 1%, 2% and 3% (w / w) of pyrolytic bio-oil and petrochemical diesel fuel were prepared at different agitation conditions and temperature stability of the emulsions is assessed by emulsification index (SI). The technology adopted resulted in a weight reduction of 81.5%, a yield of bio-oil 43% (w/w) and bio-coal 18.5% (w/w). The physicochemical characterization of bio-oil indicated the absence of metals originating from ink print paper money. An improvement in physico-chemical characteristics of bio-oil was identified by preparing binary mixtures (emulsions) with diesel oil, enhancing its use in different technologies that promote energy generation such as diesel engines, gas turbines and boilers. Stable emulsions with IE of 69% to 77% in 5 hours, were observed in the conditions of 2500 rpm and 3500 rpm, respectively.FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul