Caracterização das rochas vulcânicas e plutônicas félsicas e intermediárias do Alvo Estrela (Cu-Au), Serra de Carajás, Pará
Descripción
The Estrela Cu-Au deposit is situated in the Serra do Rabo, at the easternmost part of Carajás shear zone, at the Serra dos Carajás region. It is hosted by altered andesites and gabbros and rhyolites of the Grão Pará Group, Itacaiunas Supergroup, formed at 2.76 Ga (Sm-Nd isochronic age) cut by Paleoproterozoic porphyritic quartz diorite, orthoclase-albite granite, topaz-orthoclase-albite granite and quartz-alkali-feldspar syenite (episyenite). The Cu-Au ore is epigenetic, mostly in quartz veins, disseminated in the host rocks, or forming the matrix of brecciated quartz veins. The rhyolites are distributed for 2.4 km along a WNW trending ridge, presenting mylonitized contacts with andesites to the SW and to the NE. They are composed of oligoclase and quartz phenocrysts in a matrix of oligoclase partially replaced by Fe-biotite and siderophyllite, and albite replaced by sericite and quartz. The orthoclasealbite granite, topaz-orthoclase-albite granite and quartz-alkali-feldspar syenite (episyenite) are different facies of the same granitoid intrusion. The quartz diorite is composed of andesine and orthoclase phenocrysts replaced by albite, sericite and siderophyllite in a matrix of the same minerals plus interstitial quartz. The orthoclase-albite granite facies is formed by albite, perthitic orthoclase replaced by sericite, protolithionite and lepidolite, together with quartz and topaz. The topaz-albite-orthoclase granite facies presents larger contents of topaz, zinnwaldite, lepidolite and sericitization of the orthoclase, compared with the orthoclasealbite granite facies. The episyenite is a granular and porous rock composed of a potassic feldspar matrix containing vugs filled with fluorite and chlorite. The felsic and intermediate rocks were affected by potassic alteration preceded by albitization and followed by greisenization. Siderophyllite dominated in the potassic alteration, whereas protolithionite, zinnwaldite, lepidolite and topaz dominated in the greisenization. The Estrela rhyolites show higher Rb, Cs, Th, U, Ta and Cu and lower Ba contents than the Serra Norte rhyolites. The albite-orthoclase granite and the topaz orthoclase granite are calk-alkaline to alkaline and peraluminous rocks. The Ga (67.2 ppm), Nb (67.36 ppm) and Ce (67.5 ppm) values, and the Ga/Al2O3 (4.49) and Fe/Mg (233.25) ratios of the albite-orthoclase granite are analogous to A-type granites, mainly to the Proterozoic Carajás Granites and to the A-type Phanerozoic Australian Granites. The association of the Estrela and Serra Norte rhyolites with Neoarchean andesites, along with the coincidence of REE patterns suggests that the Estrela rhyolites belong to the Grão Pará Group. The albite-orthoclase granite, topaz-albite-orthoclase granite and episyenite REE patterns also suggest that the last two are derived from metasomatic evolution of the first. The seagull-type REE pattern, associated to the Lu/Ybn ratio (1.01 ? 1.08) and the decreasing of total REE content from the albite-orthoclase granite (323.08 ppm) to the topazalbite granite (74.18 ppm) are analogous to the Pojuca (Carajás), Serra Branca and Pedra Branca (Goiás) granites.The Fe2O3/FeO ratios of the albite-orthoclase granite (0.01 - 0.11), topaz albiteorthoclase granite (0.08 ? 0.13) and episyenite (0.55 ? 0.78) indicate that the last equilibrated at a more oxidizing environment than the others. The almost absence of Ti in the protolithionites and lepidolites and the high content of AlVI in the protolithionites, lepidolites and zinnwaldites indicate that the greisenization took place in a cooling hydrothermal system and at higher pressure than the preceding potassic alteration.Nenhuma