[pt] INSTABILIDADE ESTÁTICA E DINÂMICA DE PÓRTICOS PLANOS COM LIGAÇÕES SEMI-RÍGIDAS
[en] STATIC AND DYNAMIC INSTABILITY OF PLANE FRAMES WITH SEMI-RIGID CONNECTIONS
Descrição
[pt] O principal objetivo deste trabalho é o desenvolvimento de um programa computacional para a analise não-linear estática e dinâmica de pórticos planos com ligações flexíveis (semi-rígidas). Inicialmente é apresentada a metodologia de solução não-linear e as formulações dos elementos finitos adotados na base computacional implementada. Em seguida, são estudados vários exemplos de sistemas estruturais estáticos com caminhos de equilíbrio fortemente não-lineares com a finalidade de testar os programas implementados. Então é apresentada a formulação do problema dinâmico com a definição das equações diferenciais ordinárias de movimento e as expressões das matrizes de massa e amortecimento. A solução desse sistema de equações diferenciais ordinárias é obtida por métodos de integração numérica implícitos ou explícitos. Alguns destes métodos são apresentados neste trabalho e incorporados ao programa computacional em conjunto com estratégias adaptativas de incremento automático do intervalo de tempo de integração (delta)t. Por fim, o sistema computacional desenvolvido é utilizado na modelagem e obtenção da resposta estrutural estática e dinâmica de alguns sistemas estruturais planos com comportamento eminentemente não-linear. Através destes resultados são analisados alguns fenômenos importantes de instabilidade estática e dinâmica, bem como possíveis mecanismos de colapso e a influência de parâmetros físicos e geométricos no comportamento estrutural.[en] The main objective of this thesis is to develop a numerical methodology for the nonlinear static and dynamics analysis of plane frames with semi-rigid connections. Initially, the formulations of the adopted finite elements are presented and implemented together with numerical methodologies for the solution of the non-linear equilibrium equations. Then, some examples of strongly nonlinear structural systems under static loads are studied to check the methodology. Subsequently, the ordinary differential equations of motion are derived and the corresponding damping and mass matrices are presented. The solution of this system of ordinary differential equations is obtained by implicit or explicit numerical integration methods. Some of these methods are presented in this work and incorporated into the computational program together with adaptive strategies for the automatic increment of the time step (delta)t. Finally, the computational system here developed is used to study the static and dynamic response of some plain structural systems with an inherent nonlinear behavior. A detailed parametric study is carried out to identify the influence of physical and geometric parameters on the structural behavior. This enables the analysis of some important static and dynamic instability phenomena and identification of possible mechanisms of collapse.