[en] STOCHASTIC VOLATILITY VIA MONTE CARLO LIKELIHOOD: A COMPARATIVE STUDY
[pt] VOLATILIDADE ESTOCÁSTICA VIA VEROSSIMILHANÇA DE MONTE CARLO: UM ESTUDO COMPARATIVO
Descrição
[pt] Esta dissertação discute o modelo de Volatilidade Estocástica (SV) estimado via metodologia Durbin & Koopman, chamada Verossimilhança de Monte Carlo( MCL). Comparou-se a cobertura condicional do valor em risco (VaR), deste modelo, com as do modelo GARCH(1,1) e SV estimado via Quasi Máxima Verossimilhança (QML). Os modelos foram estendindos a distúrbios Gaussiano e t-Student na equação da média. O desempenho dos modelos foi avaliado fora da amostra para retornos diários dos índices Ibovespa, S&P500, Nasdaq e Dow Jones. Para o critério de avaliação foi utilizado o teste de Christoffersen. Foram econtradas evidências empíricas de que o modelo SV estimado via MCL é tão eficiente quanto o modelo GARCH(1,1), em termos da cobertura condicional do VaR.[en] This dissertation discusses the estimation of the Stochastic Volatility (SV)model using a Durbin and Koopman methodology called Monte Carlo Like-lihood (MCL). The conditional coverage of value at risk (VaR) of SV via MCL model was compared to the GARCH (1,1) model and to the SV model via Quasi Maximum Likelihood (QML) estimation. The models were extended to Gaussian and Student-t isturbances in the mean equation. The performances of the models were evaluated out-of-sample for daily returns on the Ibovespa, S&P500, Nasdaq and Dow Jones indexes. Christoffersen test were applied for the evaluation criteria. In terms of the VaR conditional coverage, empirical evidences indicate that the SV model via MCL estimation is as efficient as the GARCH (1,1) model.