[en] BEHAVIOUR OF STRUCTURAL STEEL ENDPLATE JOINTS SUBJECTED TO BENDING MOMENT AND AXIAL FORCE
[pt] COMPORTAMENTO DE LIGAÇÕES COM PLACA DE EXTREMIDADE EM ESTRUTURAS DE AÇO SUBMETIDAS A MOMENTO FLETOR E FORÇA AXIAL
Descripción
[pt] Tradicionalmente, o projeto de pórticos em estruturas de aço assume que as ligações viga-coluna são rígidas ou flexíveis. As ligações rígidas, onde não ocorre nenhuma rotação entre os membros conectados, transferem não só momento fletor, mas também força cortante e força normal. Por outro lado, as ligações flexíveis são caracterizadas pela liberdade de rotação entre os membros conectados impedindo a transmissão de momento fletor. Desconsiderando- se estes fatos, sabe-se que a grande maioria das ligações não possuem este comportamento idealizado. De fato, a maioria das ligações transfere algum momento fletor com um nível de rotação associado. Estas ligações são chamadas semi-rígidas e seu dimensionamento deve ser executado de acordo com este comportamento estrutural real. Porém, algumas ligações viga-coluna estão sujeitas a uma combinação de momento fletor e esforço axial. O nível de esforço axial pode ser significativo, principalmente em ligações de pórticos metálicos com vigas inclinadas, em pórticos não-contraventados ou em pórticos com pavimentos incompletos. As normas atuais de dimensionamento de ligações estruturais em aço não consideram a presença de esforço axial (tração e/ou compressão) nas ligações. Uma limitação empírica de 5 por cento da resistência plástica da viga é a única condição imposta no Eurocode 3. O objetivo deste trabalho é descrever alguns resultados experimentais e numéricos para estender a filosofia do método das componentes para ligações com ações combinadas de momento fletor e esforço axial. Para se cumprir este objetivo, quinze ensaios foram realizados e um modelo mecânico é apresentado para ser usado na avaliação das propriedades da ligação: resistência à flexão, rigidez inicial e capacidade de rotação.[en] Traditionally, the steel portal frame design assumes that beam-to-column joints are rigid or pinned. Rigid joints, where no relative rotations occur between the connected members, transfer not only substantial bending moments, but also shear and axial forces. On the other extreme, pinned joints, are characterised by almost free rotation movement between the connected elements that prevents the transmission of bending moments. Despite these facts, it is largely recognised that the great majority of joints does not exhibit such idealised behaviour. In fact, many joints transfer some bending moments associated with rotations. These joints are called semi-rigid, and their design should be performed according to their real structural behaviour. However, some steel beam-to-column joints are often subjected to a combination of bending and axial forces. The level of axial forces in the joint may be significant, typical of pitched-roof portal frames, sway frames or frames with incomplete floors. Current standard for steel joints do not take into account the presence of axial forces (tension and/or compression) in the joints. A single empirical limitation of 5 percent of the beam s plastic axial capacity is the only enforced provision in Annex J of Eurocode 3. The objective of the present work is to describe some experimental and numerical results to extend the philosophy of the component method to deal with the combined action of bending and axial forces. To fulfil this objective a set of sixteen specimens were performed and a mechanical model was developed to be used in the evaluation of the joint properties: bending moment resistance, initial stiffness and rotation capacity.