[pt] ABORDAGENS DE INFERÊNCIA EVOLUCIONÁRIA EM MODELOS ADAPTATIVOS
[en] EVOLUTIONARY INFERENCE APPROACHES FOR ADAPTIVE MODELS
Description
[pt] Em muitas aplicações reais de processamento de sinais, as observações do fenômeno em estudo chegam seqüencialmente no tempo. Consequentemente, a tarefa de análise destes dados envolve estimar quantidades desconhecidas em cada observação concebida do fenômeno. Na maioria destas aplicações, entretanto, algum conhecimento prévio sobre o fenômeno a ser modelado está disponível. Este conhecimento prévio permite formular modelos Bayesianos, isto é, uma distribuição a priori sobre as quantidades desconhecidas e uma função de verossimilhança relacionando estas quantidades com as observações do fenômeno. Dentro desta configuração, a inferência Bayesiana das quantidades desconhecidas é baseada na distribuição a posteriori, que é obtida através do teorema de Bayes. Infelizmente, nem sempre é possível obter uma solução analítica exata para esta distribuição a posteriori. Graças ao advento de um formidável poder computacional a baixo custo, em conjunto com os recentes desenvolvimentos na área de simulações estocásticas, este problema tem sido superado, uma vez que esta distribuição a posteriori pode ser aproximada numericamente através de uma distribuição discreta, formada por um conjunto de amostras. Neste contexto, este trabalho aborda o campo de simulações estocásticas sob a ótica da genética Mendeliana e do princípio evolucionário da sobrevivência dos mais aptos. Neste enfoque, o conjunto de amostras que aproxima a distribuição a posteriori pode ser visto como uma população de indivíduos que tentam sobreviver num ambiente Darwiniano, sendo o indivíduo mais forte, aquele que possui maior probabilidade. Com base nesta analogia, introduziu-se na área de simulações estocásticas (a) novas definições de núcleos de transição inspirados nos operadores genéticos de cruzamento e mutação e (b) novas definições para a probabilidade de aceitação, inspirados no esquema de seleção, presente nos Algoritmos Genéticos. Como contribuição deste trabalho está o estabelecimento de uma equivalência entre o teorema de Bayes e o princípio evolucionário, permitindo, assim, o desenvolvimento de um novo mecanismo de busca da solução ótima das quantidades desconhecidas, denominado de inferência evolucionária. Destacamse também: (a) o desenvolvimento do Filtro de Partículas Genéticas, que é um algoritmo de aprendizado online e (b) o Filtro Evolutivo, que é um algoritmo de aprendizado batch. Além disso, mostra-se que o Filtro Evolutivo, é em essência um Algoritmo Genético pois, além da sua capacidade de convergência a distribuições de probabilidade, o Filtro Evolutivo converge também a sua moda global. Em conseqüência, a fundamentação teórica do Filtro Evolutivo demonstra, analiticamente, a convergência dos Algoritmos Genéticos em espaços contínuos. Com base na análise teórica de convergência dos algoritmos de aprendizado baseados na inferência evolucionária e nos resultados dos experimentos numéricos, comprova-se que esta abordagem se aplica a problemas reais de processamento de sinais, uma vez que permite analisar sinais complexos caracterizados por comportamentos não-lineares, não- gaussianos e nãoestacionários.[en] In many real-world signal processing applications, the phenomenon s observations arrive sequentially in time; consequently, the signal data analysis task involves estimating unknown quantities for each phenomenon observation. However, in most of these applications, prior knowledge about the phenomenon being modeled is available. This prior knowledge allows us to formulate a Bayesian model, which is a prior distribution for the unknown quantities and the likelihood functions relating these quantities to the observations. Within these settings, the Bayesian inference on the unknown quantities is based on the posterior distributions obtained from the Bayes theorem. Unfortunately, it is not always possible to obtain a closed-form analytical solution for this posterior distribution. By the advent of a cheap and formidable computational power, in conjunction with some recent developments in stochastic simulations, this problem has been overcome, since this posterior distribution can be obtained by numerical approximation. Within this context, this work studies the stochastic simulation field from the Mendelian genetic view, as well as the evolutionary principle of the survival of the fittest perspective. In this approach, the set of samples that approximate the posteriori distribution can be seen as a population of individuals which are trying to survival in a Darwinian environment, where the strongest individual is the one with the highest probability. Based in this analogy, we introduce into the stochastic simulation field: (a) new definitions for the transition kernel, inspired in the genetic operators of crossover and mutation and (b) new definitions for the acceptation probability, inspired in the selection scheme used in the Genetic Algorithms. The contribution of this work is the establishment of a relation between the Bayes theorem and the evolutionary principle, allowing the development of a new optimal solution search engine for the unknown quantities, called evolutionary inference. Other contributions: (a) the development of the Genetic Particle Filter, which is an evolutionary online learning algorithm and (b) the Evolution Filter, which is an evolutionary batch learning algorithm. Moreover, we show that the Evolution Filter is a Genetic algorithm, since, besides its capacity of convergence to probability distributions, it also converges to its global modal distribution. As a consequence, the theoretical foundation of the Evolution Filter demonstrates the convergence of Genetic Algorithms in continuous search space. Through the theoretical convergence analysis of the learning algorithms based on the evolutionary inference, as well as the numerical experiments results, we verify that this approach can be applied to real problems of signal processing, since it allows us to analyze complex signals characterized by non-linear, nongaussian and non-stationary behaviors.