[en] MULTIPLE IMPUTATION IN MULTIVARIATE NORMAL DATA VIA A EM TYPE ALGORITHM
[pt] UM ALGORITMO - EM - PARA IMPUTAÇÃO MÚLTIPLA DE DADOS CENSURADOS
Descripción
[pt] Construímos um algoritmo tipo EM para estimar os parâmetros por máxima verossimilhança. Os valores imputados são calculados pela média condicional sujeito a ser maior (ou menor) do que o valor observado. Como a estimação é por máxima verossimilhança, a matriz de informação permite o cálculo de intervalos de confiança para os parâmetros e para os valores imputados. Fizemos experiência com dados simulados e há também um estudo de dados reais (onde na verdade a hipótese de normalidade não se aplica).[en] An EM algorithm was developed to parameter estimation of a multivariate truncate normal distribution. The multiple imputation is evaluated by the conditional expectation becoming the estimated values greater or lower than the observed value. The information matrix gives the confident interval to the parameter and values estimations. The proposed algorithm was tested with simulated and real data (where the normality is not followed).