Toggle navigation
Repositório da Associação das Universidades Confiadas a Compañía de Jesús na América Latina
español
português (Brasil)
English
português (Brasil)
español
português (Brasil)
English
Entrar
Toggle navigation
Ver item
Página inicial
Centro Universitario FEI
Documentos - CUFEI
Ver item
Página inicial
Centro Universitario FEI
Documentos - CUFEI
Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
Visualizar/
Abrir
Data
2014
Autor
Ferreira L.A.
Costa Ribeiro C.H.
Da Costa Bianchi R.A.
Metadata
Mostrar registro completo
URI
https://repositorio.fei.edu.br/handle/FEI/1241
Descrição
This article presents two new algorithms for finding the optimal solution of a Multi-agent Multi-objective Reinforcement Learning problem. Both algorithms make use of the concepts of modularization and acceleration by a heuristic function applied in standard Reinforcement Learning algorithms to simplify and speed up the learning process of an agent that learns in a multi-agent multi-objective environment. In order to verify performance of the proposed algorithms, we considered a predator-prey environment in which the learning agent plays the role of prey that must escape the pursuing predator while reaching for food in a fixed location. The results show that combining modularization and acceleration using a heuristics function indeed produced simplification and speeding up of the learning process in a complex problem when comparing with algorithms that do not make use of acceleration or modularization techniques, such as Q-Learning and Minimax-Q. © 2014 Springer Science+Business Media New York.
Collections
Documentos - CUFEI
Buscar DSpace
Esta coleção
Navegar
Todo o repositório
Comunidades e Coleções
Por data do documento
Autores
Títulos
Assuntos
Esta coleção
Por data do documento
Autores
Títulos
Assuntos
Minha conta
Entrar
Cadastro