Cambiar navegación
Repositorio de la Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina
español
English
português (Brasil)
español
español
English
português (Brasil)
Mi cuenta
Cambiar navegación
Ver ítem
Inicio
Centro Universitario FEI
Documentos - CUFEI
Ver ítem
Inicio
Centro Universitario FEI
Documentos - CUFEI
Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
Ver/
Fecha
2014
Autor
Ferreira L.A.
Costa Ribeiro C.H.
Da Costa Bianchi R.A.
Metadatos
Mostrar el registro completo del ítem
Descripción
This article presents two new algorithms for finding the optimal solution of a Multi-agent Multi-objective Reinforcement Learning problem. Both algorithms make use of the concepts of modularization and acceleration by a heuristic function applied in standard Reinforcement Learning algorithms to simplify and speed up the learning process of an agent that learns in a multi-agent multi-objective environment. In order to verify performance of the proposed algorithms, we considered a predator-prey environment in which the learning agent plays the role of prey that must escape the pursuing predator while reaching for food in a fixed location. The results show that combining modularization and acceleration using a heuristics function indeed produced simplification and speeding up of the learning process in a complex problem when comparing with algorithms that do not make use of acceleration or modularization techniques, such as Q-Learning and Minimax-Q. © 2014 Springer Science+Business Media New York.
Colecciones
Documentos - CUFEI
Buscar en el repositorio
Esta colección
Listar
Todo el repositorio
Comunidades y Colecciones
Por fecha de publicación
Autores
Títulos
Materias
Esta colección
Por fecha de publicación
Autores
Títulos
Materias
Mi cuenta
Mi cuenta
Registro