Description
La siguiente investigación se centra en la detección de regiones de humedad en imágenes de inmuebles (casas y apartamentos). Al contrario de la literatura reciente, decidimos atacar el problema utilizando texturas de las imágenes, específicamente descriptores de Haralick. Dos razones principales nos llevaron a tomar esta decisión: nuestra muestra era pequeña (un conjunto de menos de 150 imágenes) y reflexionando sobre el problema observamos que las regiones con humedad presentan, al ojo humano, texturas diferentes que las demás regiones. Generamos entonces un vector de 24 descriptores de Haralick por cada píxel de las imágenes que teníamos y cruzamos esto con el etiquetado que previamente habíamos realizado de las imágenes. Producto de esto, se originaron más de 300 millones de datos. Todos los modelos que realizamos lograron resultados satisfactorios. El modelo más simple, uno de regresión logística logró clasificar 70% correctamente. El modelo más complejo, una red neuronal, logró cerca del 81%.