Mostrar el registro sencillo del ítem

dc.contributornulleng
dc.contributornullspa
dc.contributor.authorPabón, Germán; Departamento de Física Facultad de Ciencias Pontificia Universidad Javeriana
dc.contributor.authorAmzel, Mario; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine. Baltimore, USA.
dc.date.accessioned2018-02-24T16:00:32Z
dc.date.accessioned2020-04-15T18:08:16Z
dc.date.accessioned2023-05-10T17:13:11Z
dc.date.available2018-02-24T16:00:32Z
dc.date.available2020-04-15T18:08:16Z
dc.date.available2023-05-10T17:13:11Z
dc.date.created2012-11-03
dc.identifierhttp://revistas.javeriana.edu.co/index.php/scientarium/article/view/4024
dc.identifier10.11144/javeriana.SC17-3.uubf
dc.identifier.issn2027-1352
dc.identifier.issn0122-7483
dc.identifier.urihttps://hdl.handle.net/20.500.12032/91324
dc.description.abstractUsing the “pull and wait” (PNW) simulation protocol at 300 K, we studied the unfolding by force of an ubiquitin molecule. PNW was implemented in the CHARMM program using an integration time step of 1 fs and a uniform dielectric constant of 1. The ubiquitin molecule, initially solvated, was put under mechanical stress, exerting forces from different directions. The rupture of five hydrogen bonds between parallel strands β1 and β5 takes place during the extension from 13 to 15 Å, defines a mechanical barrier for unfolding and dominates the point of maximum unfolding force. The simulations described here show that given adequate time, a small applied force can destabilize those five H-bonds relative to the bonds that can be created to water molecules; allowing the formation of stable H-bonds between a single water molecule and the donor and acceptor groups of the interstrand H-bonds. Thus, simulations run with PNW show that the force is not responsible for “ripping apart” the backbone H-bonds; it merely destabilizes them making them less stable than the H-bonds they can make with water. Additional simulations show that the force necessary to destabilize the H-bonds and allow them to be replaced by H-bonds to water molecules depends strongly on the pulling direction. By using a simulation protocol that allows equilibration at each extension we have been able to observe the details of the events leading to the unfolding of ubiquitin by mechanical force.spa
dc.formatPDFspa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isoeng
dc.publisherPontificia Universidad Javerianaeng
dc.relation.urihttp://revistas.javeriana.edu.co/index.php/scientarium/article/view/4024/3104
dc.relation.urihttp://revistas.javeriana.edu.co/index.php/scientarium/article/view/4024/4237
dc.subjectnulleng
dc.subjectH-bond, molecular dynamics, PNW, mechanical unfoldingeng
dc.subjectnulleng
dc.subjectnullspa
dc.subjectH-bond, molecular dynamics, PNW, mechanical unfoldingspa
dc.subjectnullspa
dc.titleUnfolding Ubiquitin by force: water mediated H-bond destabilizationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP