Show simple item record

dc.contributor.authorSCURO, N. L.
dc.contributor.authorGabriel Angelo
dc.contributor.authorAngelo, E.
dc.contributor.authorUMBEHAUN, P. E.
dc.contributor.authorTORRES, W. M.
dc.contributor.authorSANTOS, P. H. G.
dc.contributor.authorFREIRE, L. O.
dc.contributor.authorANDRADE, D. A.
dc.date.accessioned2022-01-04T15:22:07Z
dc.date.accessioned2023-05-03T20:33:37Z
dc.date.available2022-01-04T15:22:07Z
dc.date.available2023-05-03T20:33:37Z
dc.date.issued2020-10-30
dc.identifier.citationSCURO, N. L.; ANGELO G.; ANGELO, E.; UMBEHAUN, P. E.; TORRES, W. M.; SANTOS, P. H. G.; FREIRE, L. O.; ANDRADE, D. A. RANS-Based CFD Calculation for Pressure Drop and Mass Flow Rate Distribution in an MTR Fuel Assembly. NUCLEAR SCIENCE AND ENGINEERING, v. xx, n. xxx, p. 1-18, 2020.
dc.identifier.issn0029-5639
dc.identifier.urihttps://hdl.handle.net/20.500.12032/88654
dc.description.abstractThis work presents a Reynolds-averaged Navier Stokes–based computational fluid dynamics methodology for the calculation of pressure drop and mass flow rate distribution in a material test reactor flat-plate-type standard fuel assembly (SFA) of the IEA-R1 Brazilian research reactor to predict future improvements in newer SFA designs. The results improve the understanding of the origin of fuel plate oxidation due to high temperatures, and consequently, due to the internal flow dynamics. All numerical analyses were performed with the ANSYS-CFX® commercial code. The observed results show that the movement pin decreases the central channel mass flow due to the length of the vortex at the inlet region. However, the outlet nozzle showed greater general influence in the flow dynamics. It should have a more gradual cross-section transition being away from the fuel plates or a squarer-shaped design to get a more homogeneous mass flow distribution. Optimizing both regions could lead to a better cooling condition. The validation of the IEA-R1 numerical methodology was made by comparing the McMaster University’s dummy model experiment with a numerical model that uses the same numerical methodology. The experimental data were obtained with laser Doppler velocimetry, and the comparison showed good agreement for both pressure drop and mass flow rate distribution using the Standard k-ω turbulence model.
dc.relation.ispartofNUCLEAR SCIENCE AND ENGINEERING
dc.rightsAcesso Restrito
dc.subjectANSYS-CFX®
dc.subjectComputational fluid dynamics
dc.subjectMaterial test reactor
dc.subjectIEA-R1
dc.titleRANS-Based CFD Calculation for Pressure Drop and Mass Flow Rate Distribution in an MTR Fuel Assemblypt_BR
dc.typeArtigopt_BR


Files in this item

FilesSizeFormatView

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP