Mostrar registro simples

dc.contributor.advisorSantos, Paulo Eduardo
dc.contributor.authorDomingos, Lucas Cesar Ferreira
dc.date.accessioned2023-01-09T01:12:39Z
dc.date.accessioned2023-05-03T20:31:52Z
dc.date.available2023-01-09T01:12:39Z
dc.date.available2023-05-03T20:31:52Z
dc.date.issued2022
dc.identifier.citationDOMINGOS, Lucas Cesar Ferreira. <b> Machine learning methods for vessel type classification with underwater acoustic data. </b> 2022. 89 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2022. Disponível em: https://doi.org/10.31414/EE.2022.D.131558.
dc.identifier.urihttps://hdl.handle.net/20.500.12032/88534
dc.description.abstractA identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicos
dc.description.abstractVesselidentificationinacontrolledtrafficenvironmentcanbebeneficialforbiodiversity maintenance andcoastalenvironmentsurveillanceinprotectedregions,generatingcontributions to thelocalcommunityandtheecosystem.Inthiscontext,thereisalatentneedforbetter techniquesforidentifyingandclassifyingvessels,providingmechanismstoimprovethesesystems. Underwatersoundsignalsaremorechallengingtobemaskedoromitted,duringthenavigationof a vessel,whencomparedtootherdatasources,providingareliableandfraud-resistantsourcefor classification systems,however,theysufferinterferencefromtheconditionsoftheenvironment in whichtheyareused.Inthiswork,amethodologywasproposedtoperformtheunderwater acousticclassification,usingsignalsproducedbyvessels,usingmachinelearningtechniques, and alsoconsideringenvironmentalvariables,suchasthedistancebetweenthehydrophonesand the targetvessels.Acomparisonregardingtheperformanceofthemostcommonconvolutional neural networkswasperformedusingtheVGGandResNet18architectures.Comparisonswere also madebetweenthethreepreprocessingfilterscommonlypresentintheliterature,theMel spectrograms,theGammafilters,andtheconstantQtransform,providingastudyontheimpact of suchvariablesinthefinalclassification.Duetothescarcityofannotateddatasetstostudythis problem, anannotateddatasetwasproposedbasedonthesoundsignalsoftheOceanCanada Networkinitiative.Theresultsobtainedreachedtheaccuracyof94.95%ontheproposeddataset using CQTasthepreprocessingfilterforaResNet-basedconvolutionalneuralnetwork.The source codesforreproducingthetests,aswellasforobtainingthedataset,arefreelyandpublicly available for academic purposes
dc.languageeng
dc.language.isoen_US
dc.publisherCentro Universitário FEI, São Bernardo do Campo
dc.subjectDeep learning
dc.subjectAcústica
dc.subjectHidrofones
dc.titleMachine learning methods for vessel type classification with underwater acoustic datapt_BR
dc.typeDissertaçãopt_BR


Arquivos deste item

ArquivosTamanhoFormatoVisualização
fulltext.pdf1.412Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP