dc.description.abstract | The success of artificial neural networks (ANN) applications as an alternative modeling technique to response surface methodology (RSM) has attracted interest from major industries such as pharmaceuticals, cosmetics, oil, food, petroleum and surfactants, among others. Development of production media is a strategic area for the
industry of biosurfactants by to increase efficiency and reduce costs of the process. In this area, surface tension measurements and emulsification activity has been routinely
used for indirect monitoring of biosurfactant production. In this paper, the capabilities of RNA-based modeling and MSR were compared in surface tension estimation of
biosurfactant production media. The two techniques used experimental data from the central composite design with four axial points and three replicates at the central point. The concentrations of ammonium sulfate and potassium monobasic phosphate were used as independent variables. The surface tensions of cell-free broths, with 96 h, of biosurfactant production media by Candida lipolytica UCP 988 in sea water were used as response variable. The results demonstrated the superiority of the RNA-based methodology. The quadratic model obtained using MSR showed a coefficient of determination equal to 0.43 and highly significant lack of fit. The fit of the model RNA based on experimental data was excellent. Simulations with the model using the training, validation an test sets showed root mean squared error (rmse) of less than
0.05 and coefficients of determination higher than 0.99. In this context, the RNA-based estimation of surface tension from the constituents of biosurfactant production media showed to be an efficient, reliable and economical method to monitor the biosurfactant production. The work also showed the ability of the yeast Candida lipolytica UCP 0988 use corn oil and produce biosurfactants in extremely alkaline sea water (initial pH 14),
supplemented with sources of nitrogen and phosphorus | eng |