Show simple item record

dc.contributor.authorRayas-Sánchez, José E.
dc.date.accessioned2013-05-21T15:23:26Z
dc.date.accessioned2023-03-21T20:42:57Z
dc.date.available2013-05-21T15:23:26Z
dc.date.available2023-03-21T20:42:57Z
dc.date.issued2003-06
dc.identifier.citationJ. E. Rayas-Sánchez, “EM-based optimization of microwave circuits using artificial neural networks,” in IEEE MTT-S Int. Microwave Symp. Workshop Notes and Short Courses, Philadelphia, PA, Jun. 2003.es
dc.identifier.urihttps://hdl.handle.net/20.500.12032/75013
dc.descriptionNeural network applications in microwave engineering have been reported since the 1990s. Description of artificial neural networks and their key issues, namely architectures, paradigms, training methods, data sets formation, learning and generalization errors, learning speed, etc., in the context of microwave CAD, has been extensively reported. It is clear that neural networks have been widely used for modeling microwave devices and circuits, in many innovative ways. In contrast, the use of neural networks for microwave design by optimization is at a less developed stage. This presentation aims at reviewing the most relevant work in electromagnetics-based design and optimization of microwave circuits exploiting artificial neural networks (ANNs). Measurement-based design of microwave circuits using ANNs is also considered. The conventional and most popular microwave neural optimization approach is reviewed. Advantages and drawbacks of this strategy are emphasized. Improvements of this “black-box” approach such as segmentation, decomposition, hierarchy, design of experiments (DoE) and clusterization are mentioned. The main limitations of the conventional neural optimization approach can be alleviated by incorporating available knowledge into the neural network training scheme. Several innovative strategies are reviewed, including the Difference Method (also called Hybrid EM-ANN), the Prior Knowledge Input (PKI) Method, the Knowledge-Based ANN approach (KBNN), the Neural Space Mapping (NSM) optimization method, the Extended Neural Space Mapping approach, and the Neural Inverse Space Mapping (NISM) optimization algorithm. Practical examples using these techniques are illustrated, including EM-based statistical design of relevant microwave problems. Another strategy for ANN-based design of microwave circuits consists of using synthesis neural networks, also called “inverse neural models”. A synthesis neural network is trained to learn the mapping from the responses to the design parameters of the microwave circuit. Difficulties in developing synthesis neural networks are indicated. Finally, the key issues on transient EM-based design using neural networks are described. Suitable paradigms for approximating nonlinear dynamic behaviors are mentioned, such us Recurrent Neural Networks (RNN) and their corresponding training techniques.es
dc.description.sponsorshipITESO, A.C.es
dc.language.isoenges
dc.publisherIEEE MTT-S Int. Microwave Symp. Workshop Notes and Short Courseses
dc.relation.ispartofseriesIEEE MTT-S Int. Microwave Symp. Workshop Notes and Short Courses;2003
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes
dc.subjectNeural Space Mapping (NSM)es
dc.subjectExtended Neural Space Mappinges
dc.subjectNeural Inverse Space Mappinges
dc.subjectElectromagnetic Based Designes
dc.subjectNeural Networkses
dc.titleEM-Based Optimization of Microwave Circuits using Artificial Neural Networkses
dc.typeinfo:eu-repo/semantics/conferencePaperes


Files in this item

FilesSizeFormatView
ANN4D_IMS03_workshop_handouts.pdf477.1Kbapplication/pdfView/Open
mtt2003_workshop_abstract.pdf8.377Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP