Show simple item record

dc.contributor.authorShkvarko, Yuriy
dc.contributor.authorVillalón-Turrubiates, Iván E.
dc.contributor.authorVázquez-Bautista, René
dc.date.accessioned2016-04-21T21:52:56Z
dc.date.accessioned2023-03-21T19:29:52Z
dc.date.available2016-04-21T21:52:56Z
dc.date.available2023-03-21T19:29:52Z
dc.date.issued2007
dc.identifier.citationYuriy Shkvarko, René Vázquez-Bautista, Iván E. Villalón-Turrubiates, “Fusion of Bayesian Maximum Entropy Spectral Estimation and Variational Analysis Methods for Enhanced Radar Imaging”, in Advanced Concepts for Intelligent Vision Systems – Lecture Notes in Computer Science, J. Blanc-Talon et al., Ed. Alemania: Springer Berlin Heidelberg, 2007, pp. 109-120.es
dc.identifier.isbn978-3-540-74606-5
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/20.500.12032/74862
dc.descriptionA new fused Bayesian maximum entropy–variational analysis (BMEVA) method for enhanced radar/synthetic aperture radar (SAR) imaging is addressed as required for high-resolution remote sensing (RS) imagery. The variational analysis (VA) paradigm is adapted via incorporating the image gradient flow norm preservation into the overall reconstruction problem to control the geometrical properties of the desired solution. The metrics structure in the corresponding image representation and solution spaces is adjusted to incorporate the VA image formalism and RS model-level considerations; in particular, system calibration data and total image gradient flow power constraints. The BMEVA method aggregates the image model and system-level considerations into the fused SSP reconstruction strategy providing a regularized balance between the noise suppression and gained spatial resolution with the VA-controlled geometrical properties of the resulting solution. The efficiency of the developed enhanced radar imaging approach is illustrated through the numerical simulations with the real-world SAR imagery.es
dc.description.sponsorshipCinvestaves
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofseriesAdvanced Concepts for Intelligent Vision Systems – Lecture Notes in Computer Science;
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes
dc.subjectRadar/SAR Imaginges
dc.subjectBayesian Maximum Entropy-Variational Analyses
dc.subjectRemote Sensinges
dc.titleFusion of Bayesian Maximum Entropy Spectral Estimation and Variational Analysis Methods for Enhanced Radar Imaginges
dc.typeinfo:eu-repo/semantics/bookPartes


Files in this item

FilesSizeFormatView
01 - LNCS Springer 2007.pdf2.288Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP