Mostrar registro simples

dc.contributor.authorRayas-Sánchez, José E.
dc.contributor.authorKoziel, Slawomir
dc.contributor.authorBandler, John W.
dc.date.accessioned2021-02-12T01:50:27Z
dc.date.accessioned2023-03-21T19:29:39Z
dc.date.available2021-02-12T01:50:27Z
dc.date.available2023-03-21T19:29:39Z
dc.date.issued2021-01-11
dc.identifier.citationJ. E. Rayas-Sánchez, S. Koziel, and J. W. Bandler, “Advanced RF and microwave design optimization: a journey and a vision of future trends,” IEEE J. of Microwaves, vol. 1, no. 1, pp. 481-493, Jan. 2021. (p-ISSN: 2692-8388; published online: 11 Jan. 2021; DOI: 10.1109/JMW.2020.3034263)es_MX
dc.identifier.issn2692-8388
dc.identifier.urihttps://hdl.handle.net/20.500.12032/74734
dc.descriptionIn this paper, we outline the historical evolution of RF and microwave design optimization and envisage imminent and future challenges that will be addressed by the next generation of optimization developments. Our journey starts in the 1960s, with the emergence of formal numerical optimization algorithms for circuit design. In our fast historical analysis, we emphasize the last two decades of documented microwave design optimization problems and solutions. From that retrospective, we identify a number of prominent scientific and engineering challenges: 1) the reliable and computationally efficient optimization of highly accurate system-level complex models subject to statistical uncertainty and varying operating or environmental conditions; 2) the computationally-efficient EM-driven multi-objective design optimization in high-dimensional design spaces including categorical, conditional, or combinatorial variables; and 3) the manufacturability assessment, statistical design, and yield optimization of high-frequency structures based on high-fidelity multi-physical representations. To address these major challenges, we venture into the development of sophisticated optimization approaches, exploiting confined and dimensionally reduced surrogate vehicles, automated feature-engineering-based optimization, and formal cognition-driven space mapping approaches, assisted by Bayesian and machine learning techniques.es_MX
dc.description.sponsorshipITESO, A.C.es_MX
dc.language.isoenges_MX
dc.publisherIEEEes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes_MX
dc.subjectANNes_MX
dc.subjectBayesianes_MX
dc.subjectBroydenes_MX
dc.subjectCADes_MX
dc.subjectRF and Microwave Design Optimizationes_MX
dc.subjectDesign Automationes_MX
dc.subjectGaussian Processes_MX
dc.subjectMachine Learninges_MX
dc.titleAdvanced RF and Microwave Design Optimization: A Journey and a Vision of Future Trendses_MX
dc.typeinfo:eu-repo/semantics/articlees_MX


Arquivos deste item

ArquivosTamanhoFormatoVisualização
RF and microwav ... n evolution and future.pdf3.636Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP