Mostrar el registro sencillo del ítem

dc.contributor.authorLeal-Romo, Felipe J.
dc.contributor.authorChávez-Hurtado, José L.
dc.contributor.authorRayas-Sánchez, José E.
dc.date.accessioned2019-08-30T20:23:01Z
dc.date.accessioned2023-03-21T17:12:22Z
dc.date.available2019-08-30T20:23:01Z
dc.date.available2023-03-21T17:12:22Z
dc.date.issued2018-12
dc.identifier.citationF.J. Leal-Romo, J.L. Chávez-Hurtado, and J.E. Rayas-Sánchez, “Selecting surrogate-based modeling techniques for power integrity analysis,” in IEEE MTT-S Latin America Microwave Conf. (LAMC-2018), Arequipa, Peru, Dec. 2018, pp. 1-3. DOI: 10.1109/LAMC.2018.8699021es
dc.identifier.isbn978-1-5386-7334-8
dc.identifier.urihttps://hdl.handle.net/20.500.12032/73871
dc.descriptionIn recent years, extensive usage of simulated power integrity (PI) models to predict the behavior of power delivery networks (PDN) on a chip has become more relevant. Predicting adequate performance against power consumption can yield to either cheap or costly design solutions. Since PI simulations including high-frequency effects are becoming more and more computationally complex and expensive, it is critical to develop reliable and fast models to understand system’s behavior to accelerate decision making during design stages. Hence, metamodeling techniques can help to overcome this challenge. In this work, a comparative study between different surrogate modeling techniques as applied to PI analysis is described. We model and analyze a PDN that includes two different power domains and a combination of remote sense resistors for communication and storage CPU applications. We aim at developing reliable and fast coarse models to make trade off decisions while complying with voltage levels and power consumption requirements.es
dc.language.isoenges
dc.publisherIEEEes
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes
dc.subjectDoEes
dc.subjectFitting Algorithmses
dc.subjectArtificial Neural Networks (ANN)es
dc.subjectPolynomiales
dc.subjectPolynomial Surrogate Modelinges
dc.subjectPower Delivery Networkes
dc.subjectPower Integrityes
dc.subjectSupport Vector Machineses
dc.subjectSurrogate Modelses
dc.titleSelecting Surrogate-Based Modeling Techniques for Power Integrity Analysises
dc.typeinfo:eu-repo/semantics/articlees


Ficheros en el ítem

FicherosTamañoFormatoVer
Leal_18Dec_Surrogate_models_for_PI_Author_ver.pdf521.5Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP