Mostrar el registro sencillo del ítem

dc.contributor.advisorGudiño-Mendoza, Gema B.
dc.contributor.authorMartínez-Gutiérrez, Pedro
dc.date.accessioned2023-02-01T21:53:10Z
dc.date.accessioned2023-03-16T20:09:26Z
dc.date.available2023-02-01T21:53:10Z
dc.date.available2023-03-16T20:09:26Z
dc.date.issued2022-11
dc.identifier.citationMartinez-Gutierrez, P. (2022). Schemes Based on Federated Learning for Decentralized Training in Machine Learning Models. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/20.500.12032/72755
dc.descriptionStandard Machine Learning approaches require large amounts of data usually centralized in data centers. In these approaches, there is only one device responsible for the training of the whole process. New collaborative approaches allow the training of common models from different decentralized devices, each one holding local data samples. An example is Federated Learning. In recent years, along with the blooming of Machine Learning based applications and services, ensuring data privacy and security have become a critical obligation. In this work, three training procedures based on Federated Learning were tested: FedAvg, FedADA, and LoADABoost comparing their performance versus a traditional centralized training method. Using public information from written reviews about movies, a neural network algorithm was implemented. The objective of the model was to predict whether a review is positive or negative. Utilizing the F1 Score as a performance metric, the hypothesis was to validate whether the Federated Learning training methods are similar to traditional centralized training methodologies. After the implementation of the same neural network with different training methodologies, no major differences or changes in performance were noted, concluding that Federated Learning is indeed a similar and viable training methodology.es_MX
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.titleSchemes Based on Federated Learning for Decentralized Training in Machine Learning Modelses_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX


Ficheros en el ítem

FicherosTamañoFormatoVer
TOG Federated Learning.pdf3.070Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP