Mostrar el registro sencillo del ítem

dc.contributor.authorRangel-Patiño, Francisco E.
dc.contributor.authorChávez-Hurtado, José L.
dc.contributor.authorViveros-Wacher, Andrés
dc.contributor.authorRayas-Sánchez, José E.
dc.date.accessioned2019-07-23T18:00:54Z
dc.date.accessioned2023-03-16T20:09:04Z
dc.date.available2019-07-23T18:00:54Z
dc.date.available2023-03-16T20:09:04Z
dc.date.issued2017-09
dc.identifier.citationF. E. Rangel-Patiño, J. L. Chávez-Hurtado, A. Viveros-Wacher, J. E. Rayas-Sánchez, and N. Hakim, “System margining surrogate-based optimization in post-silicon validation,” IEEE Trans. Microwave Theory Techn., vol. 65, no. 9, pp. 3109-3115, Sep. 2017. DOI: 10.1109/TMTT.2017.2701368es
dc.identifier.issn0018-9480
dc.identifier.urihttps://hdl.handle.net/20.500.12032/72523
dc.descriptionThere is an increasingly higher number of mixed-signal circuits within microprocessors. A significant portion of them corresponds to high-speed input/output (HSIO) links. Post-silicon validation of HSIO links is critical to provide a release qualification decision. One of the major challenges in HSIO electrical validation is the physical layer (PHY) tuning process, where equalization techniques are typically used to cancel any undesired effect. Current industrial practices for PHY tuning in HSIO links are very time consuming since they require massive lab measurements. On the other hand, surrogate modeling techniques allow to develop an approximation of a system response within a design space of interest. In this paper, we analyze several surrogate modeling methods and design of experiments techniques to identify the best approach to efficiently optimize a receiver equalizer. We evaluate the models performance by comparing with actual measured responses on a real server HSIO link. We then perform a surrogate-based optimization on the best model to obtain the optimal PHY tuning settings of a HSIO link. Our methodology is validated by measuring the real functional eye diagram of the physical system using the optimal surrogate model solution.es
dc.language.isoenges
dc.publisherIEEEes
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes
dc.subjectDoEes
dc.subjectEqualizationes
dc.subjectEye Diagrames
dc.subjectHSIOes
dc.subjectKriginges
dc.subjectNeural Networkes
dc.subjectOptimizationes
dc.subjectPost-silicon Validationes
dc.subjectSurrogate Modelses
dc.subjectReceiveres
dc.subjectSupport Vector Machineses
dc.titleSystem Margining Surrogate-Based Optimization in Post-Silicon Validationes
dc.typeinfo:eu-repo/semantics/articlees


Ficheros en el ítem

FicherosTamañoFormatoVer
Rangel_17Sep_System_Margining_SBO_Author_ver.pdf973.3Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP