Show simple item record

dc.contributor.authorRangel-Patiño, Francisco E.
dc.contributor.authorRayas-Sánchez, José E.
dc.contributor.authorViveros-Wacher, Andrés
dc.contributor.authorChávez-Hurtado, José L.
dc.contributor.authorVega-Ochoa, Edgar A.
dc.contributor.authorHakim, Nagib
dc.date.accessioned2019-07-22T18:12:35Z
dc.date.accessioned2023-03-10T18:12:16Z
dc.date.available2019-07-22T18:12:35Z
dc.date.available2023-03-10T18:12:16Z
dc.date.issued2019-04
dc.identifier.citationF. E. Rangel-Patiño, J. E. Rayas-Sánchez, A. Viveros-Wacher, J. L. Chávez-Hurtado, E. A. Vega-Ochoa, and N. Hakim, “Post-silicon receiver equalization metamodeling by artificial neural networks,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 4, pp. 733-740, Apr. 2019. Published version: DOI: 10.1109/TCAD.2018.2834403es
dc.identifier.issn0278-0070
dc.identifier.urihttps://hdl.handle.net/20.500.12032/71688
dc.descriptionAs microprocessor design scales to the 10 nm technology and beyond, traditional pre- and post-silicon validation techniques are unsuitable to get a full system functional coverage. Physical complexity and extreme technology process variations severely limits the effectiveness and reliability of pre-silicon validation techniques. This scenario imposes the need of sophisticated post-silicon validation approaches to consider complex electromagnetic phenomena and large manufacturing fluctuations observed in actual physical platforms. One of the major challenges in electrical validation of high-speed input/output (HSIO) links in modern computer platforms lies in the physical layer (PHY) tuning process, where equalization techniques are used to cancel undesired effects induced by the channels. Current industrial practices for PHY tuning in HSIO links are very time consuming since they require massive lab measurements. An alternative is to use machine learning techniques to model the PHY, and then perform equalization using the resultant surrogate model. In this paper, a metamodeling approach based on neural networks is proposed to efficiently simulate the effects of a receiver equalizer PHY tuning settings. We use several design of experiments techniques to find a neural model capable of approximating the real system behavior without requiring a large amount of actual measurements. We evaluate the models performance by comparing with measured responses on a real server HSIO link.es
dc.language.isoenges
dc.publisherIEEEes
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes
dc.subjectArtificial Neural Networkes
dc.subjectEqualizationes
dc.subjectHSIOes
dc.subjectMetamodelses
dc.subjectPost-silicon Validationes
dc.subjectReceiveres
dc.subjectSimulationes
dc.subjectSystem Margininges
dc.titlePost-silicon Receiver Equalization Metamodeling by Artificial Neural Networkses
dc.typeinfo:eu-repo/semantics/articlees


Files in this item

FilesSizeFormatView
Rangel_18May_PostSi_EQ_ANN_model_AuthorVer.pdf6.105Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP