Mostrar el registro sencillo del ítem

dc.contributor.advisorMartínez-Sánchez, Víctor H.
dc.contributor.authorSánchez-Ferrusca, Iván
dc.date.accessioned2022-02-24T19:48:50Z
dc.date.accessioned2023-03-10T16:20:37Z
dc.date.available2022-02-24T19:48:50Z
dc.date.available2023-03-10T16:20:37Z
dc.date.issued2021-11
dc.identifier.citationSánchez-Ferrusca, I. (2022). Diabetic Retinopathy Image Classification with Neural Networks. Trabajo de obtención de grado, Maestría en Sistemas Computacionales. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/20.500.12032/68415
dc.descriptionThe world is experiencing an increased life expectancy, which results in a natural increase in the chance of getting a disease. The main concern is that some of the methods to determine an affectation are not so fast and need expert people. Therefore, it is necessary to create new low-cost mechanisms of diagnosis that can give us fast and better results. Recent studies have been implemented using known architectures getting high scores of accuracies. An experimental classification model was implemented in this work using Python libraries. This is an experimental model with custom neural network architecture. This work intends to contrast the results using a model based on the AlexNet against my experimental architecture. The 2 main reasons to compare my work versus AlexNet is that during my investigation of the state of the art I did not find researches to solve the DR categorization using this architecture and also if I had chosen other architecture, I would need more powerful computing. In the end, AlexNet was not a good solution. This solution will help the healthcare industry to have a less expensive and non-invasive way to determine if a person is being affected by diabetic retinopathy, depending on the damage shown on their retinases_MX
dc.description.sponsorshipITESO, A. C.es
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectNeural Networkses_MX
dc.subjectRetinopathyes_MX
dc.subjectDiabeteses_MX
dc.subjectImage Classificationes_MX
dc.titleDiabetic Retinopathy Image Classification with Neural Networkses_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX


Ficheros en el ítem

FicherosTamañoFormatoVer
DIABETIC RETINO ... N WITH NEURAL NETWORKS.pdf1.291Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP