Mostrar registro simples

dc.contributor.advisorZaldívar-Carrillo, Víctor H.
dc.contributor.advisorVillalón-Turrubiates, Iván
dc.contributor.authorEscobar-Vega, Luis M.
dc.date.accessioned2021-08-06T18:40:30Z
dc.date.available2021-08-06T18:40:30Z
dc.date.issued2021-06
dc.identifier.citationEscobar-Vega, L. M. (2021). Using Interpretive Semantics Techniques to Enhance Ontology Learning. Tesis de doctorado, Doctorado en Ciencias de la Ingeniería. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/11117/7461
dc.descriptionAs intelligent virtual assistant scales to the mass market, traditional validation techniques for question answering systems become inappropriate to get full functional coverage of the system. Natural language and conversational dialog inherent complexities introduce design challenges to guarantee process, talk, and understanding performance. Besides, there is and an increasing number of training language models in question-answering systems. A significant portion of them corresponds to the statistic-based language model. Improvements in datasets, natural language processing techniques, and processing speed have allowed better data rates to scale beyond 90% of the Score. Some effects of the lack of interpretation can create multiple understanding integrity problems in solving a question. This problem is aggravated when the model faces a new and different context from that used in the training process. Challenges for meaning comprehension are continuously increasing. Therefore, information retrieval processes extract key elements of the language that can be critical for making more useful question-answering systems. Using appropriate information retrieval techniques to extract critical elements that can be used to create new knowledge structures is a significant challenge. The combination of information retrieval and ontology learning can be a very consuming validation task. Typical practices in question-answering systems construction are statistic-based. Consequently, they require massive datasets to train their models, making the information retrieval process too lengthy and prohibitive when the model faces new contexts. In this doctoral dissertation, the combination of interpretive semantics, semantic similarity, and ontology learning methods with suitable statistical functions is proposed to improve the efficiency of extracting semantic elements from a text. The proposed methods are implemented in a software tool, and its performance is evaluated on real question-answering platforms such as virtual assistants. The results show both the efficiency of the proposed methods and significant improvements when compared to state-of-the-art practices.es_MX
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectSemánticaes_MX
dc.subjectOntologieses_MX
dc.subjectOntologyes_MX
dc.subjectArtificial Intelligencees_MX
dc.subjectSemántica Interpretativaes_MX
dc.subjectSemanticses_MX
dc.subjectInterpretive Semanticses_MX
dc.subjectSememeses_MX
dc.subjectSemantic Evidencees_MX
dc.subjectMaximum Entropyes_MX
dc.subjectOntology Learninges_MX
dc.subjectDescription Logices_MX
dc.subjectSimilarity Indexes_MX
dc.subjectNatural Language Processinges_MX
dc.subjectWeb Ontology Languagees_MX
dc.subjectQuestion Answering Systemes_MX
dc.titleUsing Interpretive Semantics Techniques to Enhance Ontology Learninges_MX
dc.typeinfo:eu-repo/semantics/doctoralThesises_MX


Arquivos deste item

ArquivosTamanhoFormatoVisualização
PhDEngScITESOTesis.pdf1.407Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP