Show simple item record

dc.contributor.authorOrtegón-Aguilar, Jaime
dc.contributor.authorCastillo-Atoche, Alejandro
dc.contributor.authorCarrasco-Álvarez, Roberto
dc.contributor.authorVázquez-Castillo, Javier
dc.contributor.authorVillalón-Turrubiates, Iván E.
dc.contributor.authorPérez-Martínez, Omar
dc.date.accessioned2016-12-06T17:37:20Z
dc.date.accessioned2023-03-10T15:16:19Z
dc.date.available2016-12-06T17:37:20Z
dc.date.available2023-03-10T15:16:19Z
dc.date.issued2016-11
dc.identifier.citationJ. O. Aguilar; A. C. Atoche; R. C. Álvarez; J. V. Castillo; I. Villalón–Turrubiates; O. Pérez-Martínez, "Enhancement and Edge-Preserving Denoising: An OpenCL-Based Approach for Remote Sensing Imagery," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol. 9, no. 12, pp.1-11, 2016.es
dc.identifier.issn1939-1404
dc.identifier.urihttps://hdl.handle.net/20.500.12032/67925
dc.descriptionImage enhancement and edge-preserving denoising are relevant steps before classification or other postprocessing techniques for remote sensing images. However, multisensor array systems are able to simultaneously capture several low-resolution images from the same area on different wavelengths, forming a high spatial/spectral resolution image and raising a series of new challenges. In this paper, an open computing language based parallel implementation approach is presented for near real-time enhancement based on Bayesian maximum entropy (BME), as well as an edge-preserving denoising algorithm for remote sensing imagery, which uses the local linear Stein’s unbiased risk estimate (LLSURE). BME was selected for its results on synthetic aperture radar image enhancement, whereas LLSURE has shown better noise removal properties than other commonly used methods. Within this context, image processing methods are algorithmically adapted via parallel computing techniques and efficiently implemented using CPUs and commodity graphics processing units (GPUs). Experimental results demonstrate the reduction of computational load of real-world image processing for near real-time GPU adapted implementation.es
dc.description.sponsorshipITESO, A.C.es
dc.language.isoenges
dc.publisherIEEEes
dc.relation.ispartofseriesIEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing (J-STARS): Special Issue on Remote Sensing in Latin America;99
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes
dc.subjectImage enhancementes
dc.subjectImage Processinges
dc.subjectParallel Processinges
dc.subjectRemote Sensinges
dc.subjectUnmanned Aerial Vehicleses
dc.titleEnhancement and Edge-Preserving Denoising: An OpenCL-Based Approach for Remote Sensing Imageryes
dc.typeinfo:eu-repo/semantics/articlees


Files in this item

FilesSizeFormatView
Enhancement and Edge-Preserving Denoising.pdf904.2Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP