Show simple item record

dc.contributor.advisorMaillard, Patrícia Augustin Jaques
dc.contributor.authorStein, Roger Alan
dc.date.accessioned2019-03-07T14:41:05Z
dc.date.accessioned2022-09-22T19:31:54Z
dc.date.available2019-03-07T14:41:05Z
dc.date.available2022-09-22T19:31:54Z
dc.date.issued2018-03-28
dc.identifier.urihttps://hdl.handle.net/20.500.12032/61975
dc.description.abstractModelos eficientes de representação numérica textual (word embeddings) combinados com algoritmos modernos de aprendizado de máquina têm recentemente produzido uma melhoria considerável em tarefas de classificação automática de documentos. Contudo, a efetividade de tais técnicas ainda não foi avaliada com relação à classificação hierárquica de texto. Este estudo investiga a aplicação daqueles modelos e algoritmos neste problema em específico através de experimentação e análise. Modelos de classificação foram treinados usando implementações proeminentes de algoritmos de aprendizado de máquina—fastText, XGBoost e CNN (Keras)— e notórios métodos de geração de word embeddings—GloVe, word2vec e fastText—com dados disponíveis publicamente e avaliados usando métricas especificamente adequadas ao contexto hierárquico. Nesses experimentos, fastText alcançou um LCAF1 de 0,871 usando uma versão da base de dados RCV1 com apenas uma categoria por tupla. A análise dos resultados indica que a utilização de word embeddings é uma abordagem muito promissora para classificação hierárquica de texto.pt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectHierarchical classificationen
dc.subjectClassificação hierárquicapt_BR
dc.titleAn analysis of hierarchical text classification using word embeddingspt_BR
dc.typeDissertaçãopt_BR


Files in this item

FilesSizeFormatView
Roger Alan Stein_.pdf476.2Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP