Mostrar registro simples

dc.contributor.advisorCopetti, Jacqueline Biancon
dc.contributor.authorSilva, Jonatan Silva da
dc.date.accessioned2017-11-13T12:25:17Z
dc.date.accessioned2022-09-22T19:27:33Z
dc.date.available2017-11-13T12:25:17Z
dc.date.available2022-09-22T19:27:33Z
dc.date.issued2017-07-17
dc.identifier.urihttps://hdl.handle.net/20.500.12032/61118
dc.description.abstractWith the advancement of technology, electronic circuits are manufactured in ever smaller sizes and with greater data processing power. Currently chips are being produced in small areas, with more than 1010 encapsulated transistors, which causes increased heat generated and thus elevated operating temperature. The high temperature is responsible for the increase of faults and causes the decrease of their efficiency. The most frequent faults caused by the heating of the integrated circuits are the increase of the mechanical stress in the joints of weld, that can break or break contacts by thermal fatigue; Incompatibility of thermal expansion of different materials; Modifying the electrical performance of the device; The increase of leakage currents, the acceleration of the corrosion process and the occurrence of electro migration. Due to this, the present work presents an experimental analysis of a system of microchannels with single phase fluid flow, water, for the dissipation of heat and, therefore, the decrease of the temperature of a system, representing a circuit board with electronic transistors. The microchannels were developed in a double-sided thermo-conductive adhesive tape using a cut-off printer. The device measures 50 x 70 mm and has 10 parallel microchannels of rectangular section with 800 μm wide and 400 μm in height, resulting in a hydraulic flow channel diameter of 533 μm. Tests are performed for different heat flows and liquid flows. The results showed that there was a decrease of the wall temperatures comparing the mass velocities, obtaining a mean variation of 10.2 ° C when modified at a mass speed of 51.2 kg / m² to 102.4 kg / m², where the refrigerant showed a reduction of 27,5 °C.en
dc.description.sponsorshipCNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectMicrocanaispt_BR
dc.subjectMcrochannelsen
dc.titleEstudo experimental da transferência de calor em um dissipador de microcanais e água como fluido refrigerantept_BR
dc.typeDissertaçãopt_BR


Arquivos deste item

ArquivosTamanhoFormatoVisualização
Jonatan Silva da Silva_.pdf2.236Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP