Show simple item record

dc.contributor.advisorDias, João Batista
dc.contributor.authorBecker, Luís Rodrigo
dc.date.accessioned2017-07-10T14:32:15Z
dc.date.accessioned2022-09-22T19:25:57Z
dc.date.available2017-07-10T14:32:15Z
dc.date.available2022-09-22T19:25:57Z
dc.date.issued2017-03-27
dc.identifier.urihttps://hdl.handle.net/20.500.12032/60802
dc.description.abstractThis work presents an experimental analysis of a photovoltaic micro-grid formed by two subsystems, one off-grid with storage and another grid-connected. It is intended to verify its operation, its capacity to supply power to an isolated charge and electric utility grid, to monitor the quality of the electric power delivered to different charges and the electric grid power, and also to quantify the performance indexes of the connected system. The grid-connected subsystem (SFCR) consists of a panel of 1080 Wp of multicrystalline silicon and a DC/AC. inverter of 1200 W. The off-grid subsystem of back-up (SFI-b) consists of a 600 Wp monocrystalline silicon panel, charge controller, lead-acid battery storage bench 24 V / 210 Ah, and a DC/AC inverter of 1000 W. The operation and capacity of the system are monitored during the supply of a charge, represented by a refrigerator. The quality of the energy is analyzed through measurements of active, reactive and apparent energy, power factor and generation of harmonic currents by the inverters. SFI-b is monitored for different types and charges regimes, and SFCR is monitored on clear sky, partially and totally cloudy days. Performance indexes are calculated on clear sky and partly cloudy days over the first six months of 2016. The results demonstrate that the SFI-b is capable of servicing the charge reliably, switching it automatically to the utility grid when the batteries bank reaches a predetermined discharge depth, while the SFCR injects the power produced in power line grid. The energy quality indicators of the SFI-b inverter were adequate, staying inside the limits mentioned in the legislation, and analogous to those presented by the power line grid of the local distributor. The SFCR inverter presented satisfactory energy quality indicators, also in most of the time inside the limits mentioned in the legislation, except for the cloudy days and periods of low irradiance, showing significant reactive energy generation and current harmonic distortions. Considering the average between clear and partially cloudy days, the global average efficiency of SFCR is 9,9%, and the average daily energy injected on the grid is 4,7 kWh. It was verified that the quality of the energy produced by the SFI-b practically independent of the irradiance, but the SFCR depends directly on the irradiance and the load level of the inverter, in the quality energy generation.en
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectMicrorrede fotovoltaicapt_BR
dc.subjectPhotovoltaic micro-griden
dc.titleAnálise experimental da qualidade da energia de uma microrrede fotovoltaica com back-uppt_BR
dc.typeDissertaçãopt_BR


Files in this item

FilesSizeFormatView
Luís Rodrigo Becker_.pdf4.479Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP