dc.description.abstract | Large losses are generated in the countryes financial systems, by money laundering.
The volume of financial data is big issue to identify digital crime and money laundering.
Audits in financial data have limitations in detecting fraud, in large part it is still performed in a traditional way, data are collected by sampling and often unable to identify a real-time crime situation. This research is aiming to serve in addressing this gap, to propose an monitoring statistical method, from multivariate control chart based on Benford’s law for detecting suspicious of fraud in financial data, including those due to money laundering. It was initially defined as a conceptual model in order to determine the type of probability distribution that represents data from financial launches. It was adopted an assumption that this type of data adheres to the Benford’s Law distribution. Subsequently, an empirical distribution was obtained, estimated from the own data. Two
procedures were tested to verify a suspected money laundering fraud through the significant first-digit assessment: The Multivariate 2 Control Chart and the Multivariate
Hotelling’s T2 Control Chart. Data were simulated using the R-Project software until
the occurrence of the 50.000o signal. Finally, the simulation procedures were applied
to real data in order to exemplify the method operationally. From the simulation, the
two Control Charts tested were evaluated for ARL, that is, average number of observations until the signaling that the series started to operate in an out-of-control state, which it means suspicious of fraudulent launches. The application of the retrospective analysis method in the financial launchings of county’s campaign from 2016 Elections in five capitals of Brazil, based on the expected proportions from the first digit given by Benford’s Law, no suspicions fraud were evidenced in the data obtained from the site of Tribunal Superior Eleitoral (TSE). Considering the application in a set of data from a financial institution, signs of divergence between the frequencies of the first digits of the entries and the expected values were observed, but these points beyond the identified limits are close in all three analyzes. Indicating the period of the data which ones the audit will focus in a further investigation. Academic contribution is identified by developing a multivariate Control Chart together the Benford’s law in an application model with an innovative approach to the statistical process control aimed at the financial area,using accessible, easy to process, reliable and accurate computational resources that allow improvement through new academic approaches. As regard to the contribution to society, it is given the opportunity of applying the model by financial entities and the community in the data of civil and state organizations, disclosed in the information channels in order to provide access to analysis and verification of the suitability of facts and data by citizen practice. | en |