Análise fatorial de fluido viscoplástico dependente da temperatura através de um método estabilizado de elementos finitos
Description
This paper presents a factor analysis using computational fluid dynamics, flow and heat transfer for viscoplastic fluids from a cylinder confined between parallel walls. It is considered that the rheological properties sensitive to temperature, which couples the thermal and fluid dynamic problems bilaterally. It was developed a formulation based on stabilized finite element method Galerkin Least Squares (GLS - Galerkin Leart-Squares) for approaching non-Newtonian flow with heat transfer and rheological properties dependent terms. This formulation has been implemented in a proper computer code. For the modeling of viscous stresses, a generalized Newtonian fluid model was used, with viscosity function given by the Herschel-Bulkley regularized model as Papanastasiou and properties dependent terms – the initial yield stress and consistency index. The numerical results were investigated using the dimensionless: Reynolds number (Re), Herschel-Bulkley number (Hb), Prandtl number (Pr), potency index (n) and temperature dependence coefficients (a* and b*). It conducted a full factorial experimental design 2K, with objective to evaluate the influence of these parameters on the heat transfer rate, through the Nusselt number (Nu), and localized head loss due to the cylinder by duct obstruction.Nenhuma