Mostrar el registro sencillo del ítem

dc.contributor.advisorMacagnan, Mario Henrique
dc.contributor.authorSilva, Daniel dos Santos
dc.date.accessioned2015-07-08T14:09:52Z
dc.date.accessioned2022-09-22T19:15:46Z
dc.date.available2015-07-08T14:09:52Z
dc.date.available2022-09-22T19:15:46Z
dc.date.issued2012-01-31
dc.identifier.urihttps://hdl.handle.net/20.500.12032/58815
dc.description.abstractThe use of solar energy as an alternative renewable energy, has taken a key highlight in the scene in different parts of the world. In particular, this type of energy used for heating water for domestic use becomes for a growing world market, mainly due to housing programs sponsored by the federal appeals beyond the increasingly strong in the sense of trying to achieve a sustainable energy and economy by reducing the consumption of electricity and gas. A system for heating water with solar energy is basically composed of collector and storage tank. These two components account for almost the entire cost of installation and this is mainly due to the materials (copper, aluminum and stainless steel) and the manufacturing processes used. One way to reduce these costs is the use of other cheaper materials for the manufacture of collectors. and reservoirs as well as new processes, more agile. To contribute to solving this problem, the present study the development of a software tool that facilitates the evaluation of the thermal efficiency of different compositions of flat plate solar collectors. This tool was developed on the platform EES (Engineering Equation Solver) for its ease of implementation, availability of functions of the thermal properties of fluids, materials and marketing.the program follows a mathematical model based on the theory of Hottel-Bliss_Whillier and allows entry of data related to the construction parameters of the collector, such as pipe diameter and spacing, spacing absorber-cover, the pipe material, the absorber material and thickness of material coverage and thickness of isolation and environmental variables. As output data the program provides the thermal performance of the collector, useful heat, thermal losses, stagnation temperature, and other fundamental data design.the mathematical models adopted in the construction of the program were validated by comparing the calculated results with data obtained experimentally by renowned research centers in Germany, as test center for thermal solar systems of Fraunhofer Institut Solare Systeme and Institut für Energie und Wärmetechnik Thermodynamik. After validation, the tool is used to evaluate the thermal performance of collectors with other building materials, optical characteristics and thermodynamic aspects of construction as well as the optimization of the spacing tubes, distance between absorber plate and cover, among others presented in chapter four.en
dc.description.sponsorshipNenhumapt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectEnergia solarpt_BR
dc.subjectSolar energyen
dc.titleDesenvolvimento de uma ferramenta computacional para dimensionamento de coletores solares de placa planapt_BR
dc.title.alternativeDevelopment of a computational tool for design of flat plate solar collectorspt_BR
dc.typeDissertaçãopt_BR


Ficheros en el ítem

FicherosTamañoFormatoVer
Daniel dos Santos Silva.pdf1.207Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP