Mostrar el registro sencillo del ítem

dc.contributor.advisorValiati, Joao Francisco
dc.contributor.authorJost, Ingo
dc.date.accessioned2015-06-12T19:13:14Z
dc.date.accessioned2022-09-22T19:13:20Z
dc.date.available2015-06-12T19:13:14Z
dc.date.available2022-09-22T19:13:20Z
dc.date.issued2015-02-26
dc.identifier.urihttps://hdl.handle.net/20.500.12032/58344
dc.description.abstractDeep Learning is a Machine Learning’s sub-area that have achieved satisfactory results in different application areas, implemented by different algorithms, such as Stacked Auto- encoders or Deep Belief Networks. This work proposes a research that applies a classifier that implements Deep Learning concepts in Opinion Mining, area has been approached by con- stant researches, due the need of corporations seeking the understanding that customers have of your products or services. The Opinion Mining’s growth is favored also by the collaborative Web 2.0 environment, where multiple tools provide issuing opinions. The data used for exper- iments were refined in preprocessing step in order to apply Deep Learning, which it one of the main tasks the feature selection, in refined data, instead of applying Deep Learning in more raw data. The refinement strategy combined with the promising technology of Deep Learning has demonstrated in preliminary experiments the achievement of competitive results with other studies and opens the perspective for extension of this work.en
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectDeep learningen
dc.subjectMineração de opiniõespt_BR
dc.titleAplicação de Deep Learning em dados refinados para Mineração de Opiniõespt_BR
dc.typeDissertaçãopt_BR


Ficheros en el ítem

FicherosTamañoFormatoVer
Ingo Jost.pdf1.217Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP