[en] HIERARCHICAL NEURO-FUZZY BSP-MAMDANI MODEL
[pt] MODELO NEURO-FUZZY HIERÁRQUICOS BSP MAMDANI
Description
[pt] Esta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para aplicações em classificação de padrões, previsão, sistemas de controle e extração de regras fuzzy. O objetivo é criar um modelo Neuro-Fuzzy Hierárquico BSP do tipo Mamdani a partir do modelo Neuro-Fuzzy Hierárquico BSP Class (NFHB-Class) que é capaz de criar a sua própria estrutura automaticamente e extrair conhecimento de uma base de dados através de regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. Esta dissertação consiste de quatros etapas principais: estudo dos principais sistemas hierárquicos; análise do sistema Neuro-Fuzzy Hierárquico BSP Class, definição e implementação do modelo NFHB-Mamdani e estudo de casos. No estudo dos principais sistemas hierárquicos é efetuado um levantamento bibliográfico na área. São investigados, também, os principais modelos neuro-fuzzy utilizados em sistemas de controle - Falcon e o Nefcon. Na análise do sistema NFHB- Class, é verificado o aprendizado da estrutura, o particionamento recursivo, a possibilidade de se ter um maior número de entrada - em comparação com outros sistemas neuro-fuzzy - e regras fuzzy recursivas. O sistema NFHB- Class é um modelo desenvolvido especificamente para classificação de padrões, como possui várias saídas, não é possível utilizá-lo em aplicações em controle e em previsão. Para suprir esta deficiência, é criado um novo modelo que contém uma única saída. Na terceira etapa é definido um novo modelo Neuro-Fuzzy Hierárquico BSP com conseqüentes fuzzy (NFHB-Mamdani), cuja implementação utiliza a arquitetura do NFHBClass para a fase do aprendizado, teste e validação, porém, com os conseqüentes diferentes, modificando a estratégia de definição dos conseqüentes das regras. Além de sua utilização em classificação de padrões, previsão e controle, o sistema NFHB-Mamdani é capaz de extrair conhecimento de uma base de dados em forma de regras do tipo SE ENTÃO. No estudo de casos são utilizadas duas bases de dados típicas para aplicações em classificação: Wine e o Iris. Para previsão são utilizadas séries de cargas elétricas de seis companhias brasileiras diferentes: Copel, Cemig, Light, Cerj, Eletropaulo e Furnas. Finalmente, para testar o desempenho do sistema em controle faz-se uso de uma planta de terceira ordem como processo a controlar. Os resultados obtidos para classificação, na maioria dos casos, são superiores aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados. Para previsão de cargas elétricas, os resultados obtidos estão sempre entre os melhores resultados fornecidos por outros modelos aos quais formam comparados. Quanto à aplicação em controle, o modelo NFHB-Mamdani consegue controlar, de forma satisfatória, o processo utilizado para teste.[en] This paper investigates the use of Binary Space Partitioning (BSP) Hierarchical Neuro-Fuzzy Systems for applications in pattern classification, forecast, control systems and obtaining of fuzzy rules. The goal is to create a BSP Hierarchical Neuro-Fuzzy Model of the Mamdani type from the BSP Hierarchical Neuro-Fuzzy Class (NFHB-Class) which is able to create its own structure automatically and obtain knowledge from a data base through fuzzy rule, interpreted linguistically, that explain the data structure. This paper is made up of four main parts: study of the main Hierarchical Systems; analysis of the BSP Hierarchical Neuro-Fuzzy Class System, definition and implementation of the NFHB-Mamdani model, and case studies. A bibliographical survey is made in the study of the main Hierarchical Systems. The main Neuro-Fuzzy Models used in control systems - Falcon and Nefcon -are also investigated. In the NFHB-Class System, the learning of the structure is verified, as well as, the recursive partitioning, the possibility of having a greater number of inputs in comparison to other Neuro-Fuzzy systems and recursive fuzzy rules. The NFHB-Class System is a model developed specifically for pattern classification, since it has various outputs, it is not possible to use it in control application and forecast. To make up for this deficiency, a new unique output model is developed. In the third part, a new BSP Hierarchical Neuro-Fuzzy model is defined with fuzzy consequents (NFHB-Mamdani), whose implementation uses the NFHB-Class architecture for the learning, test, and validation phase, yet with the different consequents, modifying the definition strategy of the consequents of the rules. Aside from its use in pattern classification, forecast, and control, the NFHB-Mamdani system is capable of obtaining knowledge from a data base in the form of rules of the type IF THEN. Two typical data base for application in classification are used in the case studies: Wine and Iris. Electric charge series of six different Brazilian companies are used for forecasting: Copel, Cemig, Light, Cerj, Eletropaulo and Furnas. Finally, to test the performance of the system in control, a third order plant is used as a process to be controlled. The obtained results for classification, in most cases, are better than the best results found by other models and algorithms to which they were compared. For forecast of electric charges, the obtained results are always among the best supplied by other models to which they were compared. Concerning its application in control, the NFHB-Mamdani model is able to control, reasonably, the process used for test.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Non-Invasive Statistical Approach to Evaluate Processes Variability Using Fuzzy Process Capability Indices and Fuzzy Individual Control Charts
Rodríguez-Álvarez, José L. (ITESO, 2022-02) -
[pt] MODELAGEM E CONTROLE NEURO-FUZZY DE SISTEMAS DINÂMICOS
GIOVANE QUADRELLI