Mostrar el registro sencillo del ítem

[en] TRAFFIC CONTROL THROUGH FUZZY LOGIC AND NEURAL NETWORKS

dc.contributorRICARDO TANSCHEIT
dc.contributorMARLEY MARIA BERNARDES REBUZZI VELLASCO
dc.creatorALEXANDRE ROBERTO RENTERIA
dc.date2002-06-17
dc.date.accessioned2022-09-21T21:40:11Z
dc.date.available2022-09-21T21:40:11Z
dc.identifierhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2695@1
dc.identifierhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2695@2
dc.identifierhttp://doi.org/10.17771/PUCRio.acad.2695
dc.identifier.urihttps://hdl.handle.net/20.500.12032/41899
dc.description[pt] Este trabalho apresenta a utilização de lógica fuzzy e de redes neurais no desenvolvimento de um controlador de semáforos - o FUNNCON. O trabalho realizado consiste em quatro etapas principais: estudo dos fundamentos de engenharia de tráfego; definição de uma metodologia para a avaliação de cruzamentos sinalizados; definição do modelo do controlador proposto; e implementação com dados reais em um estudo de caso.O estudo sobre os fundamentos de engenharia de tráfego aborda a definição de termos,os parâmetros utilizados na descrição dos fluxos de tráfego, os tipos de cruzamentos e seus semáforos, os sistemas de controle de tráfego mais utilizados e as diversas medidas de desempenho.Para se efetuar a análise dos resultados do FUNNCON, é definida uma metodologia para a avaliação de controladores. Apresenta-se, também, uma investigação sobre simuladores de tráfego existentes, de modo a permitir a escolha do mais adequado para o presente estudo. A definição do modelo do FUNNCON compreende uma descrição geral dos diversos módulos que o compõem. Em seguida, cada um destes módulos é estudado separadamente: o uso de redes neurais para a predição de tráfego futuro; a elaboração de um banco de cenários ótimos através de um otimizador; e a criação de regras fuzzy a partir deste banco.No estudo de caso, o FUNNCON é implementado com dados reais fornecidos pela CET-Rio em um cruzamento do Rio de Janeiro e comparado com o controlador existente.É constatado que redes neurais são capazes de fornecer bons resultados na predição do tráfego futuro. Também pode ser observado que as regras fuzzy criadas a partir do banco de cenários ótimos proporcionam um controle efetivo do tráfego no cruzamento estudado. Uma comparação entre o desempenho do FUNNCON e o do sistema atualmente em operação é amplamente favorável ao primeiro.
dc.description[en] This work presents the use of fuzzy logic and neural networks in the development of a traffic signal controller - FUNNCON. The work consists of four main sections: study of traffic engineering fundamentals; definition of a methodology for evaluation of traffic controls; definition of the proposed controller model; and implementation on a case study using real data.The study of traffic engineering fundamentals considers definitions of terms,parameters used for traffic flow description, types of intersections and their traffic signals,commonly used traffic control systems and performance measures.In order to analyse the results provided by FUNNCON, a methodology for the evaluation of controllers is defined. The existing traffic simulators are investigated, in order to select the best one for the present study.The definition of the FUNNCON model includes a brief description of its modules.Thereafter each module is studied separately: the use of neural networks for future traffic prediction; the setup of a best scenario database using an optimizer; and the extraction of fuzzy rules from this database.In the case study, FUNNCON is implemented with real data supplied by CET-Rio from an intersection in Rio de Janeiro; its performance is compared with that of the existing controller.It can be observed that neural networks can present good results in the prediction of future traffic and that the fuzzy rules created from the best scenario database lead to an effective traffic control at the considered intersection. When compared with the system in operation, FUNNCON reveals itself much superior.
dc.languagept
dc.publisherMAXWELL
dc.subject[pt] REDE NEURAL
dc.subject[pt] REGRAS FUZZY
dc.subject[pt] CONTROLE DE TRAFEGO
dc.subject[pt] LOGICA FUZZY
dc.subject[en] NEURAL NETWORKS
dc.subject[en] FUZZY RULES
dc.subject[en] TRAFFIC CONTROL
dc.subject[en] FUZZY LOGIC
dc.title[pt] CONTROLE DE SEMÁFOROS POR LÓGICA FUZZY E REDES NEURAIS
dc.title[en] TRAFFIC CONTROL THROUGH FUZZY LOGIC AND NEURAL NETWORKS
dc.typeTEXTO


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP