[en] BRAZILIAN STOCK RETURN SERIES: VOLATILITY AND VALUE AT RISK
[es] SERIES DE RETORNOS DE ACCIONES BRASILERAS VOLATILIDAD Y VALOR EN RIESGO;
[pt] SÉRIES DE RETORNOS DE AÇÕES BRASILEIRAS: VOLATILIDADE E VALOR EM RISCO
Description
[pt] O objetivo principal do trabalho é o estudo dos resultados obtidos com a aplicação de diferentes modelos para estimar a volatilidade das ações brasileiras. Foram analisadas as séries de retornos diários de seis ações, num período de 1200 dias de pregão. Inicialmente, as séries foram estudadas quanto a suas propriedades estatísticas: estacionariedade, distribuição incondicional e independência. Concluiu-se que as séries são estacionárias na média, mas não houve conclusão quanto à variância, nesta análise inicial. A distribuição dos retornos não é normal, por apresentar leptocurtose. Os retornos mostraram dependência no tempo, linear e, principalmente, não linear. Modelada a dependência linear, foram aplicados dez modelos diferentes para tentar capturar a dependência não linear através da modelagem da volatilidade: os modelos foram avaliados, dentro e fora da amostra, pelos seus resíduos e pelos erros de previsão. Os resultados indicaram que os modelos menos elaborados tendem a representar pior o processo gerador dos dados, mas que os modelos pouco parcimoniosos são de difícil estimação e seus resultados não correspondem ao que seria esperado em função de sua sofisticação. As volatilidades estimadas pelos dez modelos foram utilizadas para prever valor em risco (VaR), usando- se dois processos para determinar os quantis das distribuições dos resíduos: distribuição empírica e teoria de valores extremos. Os resultados indicaram que os modelos menos elaborados prevêem melhor o VaR. Isto se deve à não estacionariedade das séries na variância, que fica evidente ao longo do trabalho.[en] This thesis aims to study the results of applying different models to estimate Brazilian stock volatilities. The models are applied to six series of daily returns, and each series has 1200 days. We studied first the series` main statistical features: Stationarity, unconditional distribution and independence. We concluded that the series are mean stationary, but there was no conclusion on variance stationarity, in this first analysis. Return distribution is not normal, because of the high kurtosis. Returns showed time dependence, linear and, mainly, not linear. We modeled the linear dependence, and then applied ten different volatility models, in order to try to capture the non linear dependence. We evaluated the different models, in sample and out of sample, by analyzing their residuals and their forecast errors. The results showed that the less sophisticated models tend to give a worst representation of the data generating process; they also showed that the less parsimonious models are difficult to estimate, and their results are not as good as we could expect from their sophistication. We used the ten models` volatility forecasts to estimate value-at-risk (VaR) and two methods to estimate the residual distribution quantiles: empirical distribution and extreme value theory. The results showed that the less sophisticated models give better VaR estimates. This is a consequence of the variance non stationarity, that became apparent along the thesis.
[es] EL objetivo principal del trabajo es el estudio de los resultados obtenidos con la aplicación dediferentes modelos para estimar la volatilidad de las acciones brasileras. Fueron analizadas series de retornos diários de seis acciones, en un período de 1200 días de pregón. Inicialmente, las series fueron estudiadas con respecto a sus propriedades estadísticas: estacionalidad, distribucción incondicional e independencia. Se concluye que las series son estacionarias en la media, pero no se llega a ninguna conclusión respecto a la varianza, en este análisis inicial. La distribucción de los retornos no es normal, ya que presenta leptocurtosis. Los retornos muestran dependencia en el tempo, lineal y, principalmente, no lineal. Después de modelar la dependencia lineal, se aplicaron diez modelos diferentes para intentar capturar la dependencia no lineal modelando la volatilidad: los modelos fueron evaluados, dentro y fuera de la amostra, por sus residuos y por los errores de previsión. Los resultados indicaran que los modelos menos elaborados tienden a representar peor el proceso generador de los datos, mientras que los modelos poco parcimoniosos son de difícil estimación y sus resultados no corresponden al que sería esperado en función de su sofisticación. Las volatilidades estimadas por los diez modelos se utilizaron para prever valor en riesgo (VaR), usando dos procesos para determinar los quantis de las distribuciones de los residuos: distribucción empírica y teoría de valores extremos. Los resultados indicaran que los modelos menos elaborados preveen mejor el VaR. Esto se debe a la no estacionalidad de las series en la varianza, que resulta evidente a lo largo del trabajo.