Mostrar registro simples

dc.contributor.authorSato J.R.
dc.contributor.authorFujita A.
dc.contributor.authorThomaz C.E.
dc.contributor.authorMartin M.d.G.M.
dc.contributor.authorMourao-Miranda J.
dc.contributor.authorBrammer M.J.
dc.contributor.authorJunior E.A.
dc.date.accessioned2019-08-19T23:45:21Z
dc.date.available2019-08-19T23:45:21Z
dc.date.issued2009
dc.identifier.citationSATO, J; FUJITA, A; THOMAZ, C. E.; MARTIN, M; MOURAOMIRANDA, J; BRAMMER, M; JUNIOR, E. Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction. NeuroImage (Orlando), v. 46, n. 1, p. 105-114, 2009.
dc.identifier.issn1053-8119
dc.identifier.urihttps://repositorio.fei.edu.br/handle/FEI/1229
dc.description.abstractPattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bi-manual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. © 2009 Elsevier Inc.
dc.relation.ispartofNeuroImage
dc.rightsAcesso Aberto
dc.titleEvaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction
dc.typeArtigo


Arquivos deste item

ArquivosTamanhoFormatoVisualização

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP