Mostrar el registro sencillo del ítem

dc.contributor.authorAlejo-Reyes, Avelina
dc.contributor.authorOlivares-Benitez, Elias
dc.contributor.authorMendoza, Abraham
dc.contributor.authorRodríguez-Vázquez, Alma N.
dc.date.accessioned2024-03-04T20:37:24Z
dc.date.accessioned2025-03-25T21:12:57Z
dc.date.available2024-03-04T20:37:24Z
dc.date.available2025-03-25T21:12:57Z
dc.date.issued2019-12
dc.identifier.citationAlejo-Reyes, A; Olivares-Benitez, E.; Mendoza, A.; Rodríguez-Vázquez, A.N. (2019). Inventory replenishment decision model for the supplier selection problem using metaheuristic algorithms[J]. Mathematical Biosciences and Engineering, 17(3): 2016-2036. doi: 10.3934/mbe.2020107es_MX
dc.identifier.issn1551-0018
dc.identifier.urihttps://hdl.handle.net/20.500.12032/159873
dc.descriptionIn supply chain management, fast and accurate decisions in supplier selection and order quantity allocation have a strong influence on the company's profitability and the total cost of finished products. In this paper, a novel and non-linear model is proposed for solving the supplier selection and order quantity allocation problem. The model is introduced for minimizing the total cost per time unit, considering ordering, purchasing, inventory, and transportation cost with freight rate discounts. Perfect rate and capacity constraints are also considered in the model. Since metaheuristic algorithms have been successfully applied in supplier selection, and due to the non-linearity of the proposed model, particle swarm optimization (PSO), genetic algorithm (GA), and differential evolution (DE), are implemented as optimizing solvers instead of analytical methods. The model is tested by solving a reference model using PSO, GA, and DE. The performance is evaluated by comparing the solution to the problem against other solutions reported in the literature. Experimental results prove the effectiveness of the proposed model, and demonstrate that metaheuristic algorithms can find lower-cost solutions in less time than analytical methods.es_MX
dc.description.sponsorshipITESO, A.C.es
dc.language.isoenges_MX
dc.publisherAIMS Presses_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectMetaheuristic Algorithmses_MX
dc.subjectParticle Swarm Optimizationes_MX
dc.subjectGenetic Algorithmes_MX
dc.subjectInventory Managementes_MX
dc.subjectSupply Chain Managementes_MX
dc.titleInventory replenishment decision model for the supplier selection problem using metaheuristic algorithmses_MX
dc.typeinfo:eu-repo/semantics/articlees_MX
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX


Ficheros en el ítem

FicherosTamañoFormatoVer
Inventory reple ... taheuristic algorithms.pdf449.6Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP