Mostrar registro simples

dc.contributor.advisorCarrasco-Navarro, Rocío
dc.contributor.authorGaray-Gutiérrez, Adrian J.
dc.date.accessioned2023-04-14T18:35:36Z
dc.date.accessioned2025-03-25T20:20:32Z
dc.date.available2023-04-14T18:35:36Z
dc.date.available2025-03-25T20:20:32Z
dc.date.issued2022-11
dc.identifier.citationGaray-Gutiérrez, A. J. (2022). Discharge Moisture Prediction of the Corn Gluten Feed Drying Process Using Machine Learning Algorithms. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/20.500.12032/158849
dc.descriptionModern manufacturing processes have multiple sensors (or instruments) installed that provide constant data stream outputs; however, there are some critical performance and quality variables where installing physical sensors is either impractical, expensive, not hardy enough for hostile environments or the sensor technology is not sufficiently advanced. An example of such a problem is measure moisture of solid products in real-time. If this scenario happens, Machine Learning (ML) approaches are a suitable solution as are capable of learning and representing complex relationships. ML algorithms establish a mathematical relationship between the quantity of interest and other measurable quantities such as readings from already available sensors (e.g., SCADA, historian softwares, SQL Databases, etc.). This study details how ML algorithms (Such as Multiple Linear Regression, Support Vector Machine Regression and Regression Trees) are used to predict critical variable moisture in gluten feed (a by-product of the wet-milling of maize grain for starch or ethanol production) as a simple, robust and fast solution for the lack of this variable real-time information for a corn products manufacturer. The resulting model performance demonstrates the feasibility of the ML algorithms approach to predict moisture behaviour.es_MX
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectMachine Learninges_MX
dc.subjectVirtual Sensorses_MX
dc.subjectMultiple Linear Regressiones_MX
dc.subjectSupport Vector Machine Regressiones_MX
dc.subjectRegression Treeses_MX
dc.subjectDrying Processes_MX
dc.titleDischarge Moisture Prediction of the Corn Gluten Feed Drying Process Using Machine Learning Algorithmses_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_MX


Arquivos deste item

ArquivosTamanhoFormatoVisualização
MDS_TOG_Moisture_Prediction_Using_ML_AG.pdf3.026Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP