Mostrar el registro sencillo del ítem

dc.contributor.advisorMuñoz-Elguezábal, Juan F.
dc.contributor.authorRojas-Mayorquín, Benito T.
dc.date.accessioned2024-06-26T18:48:57Z
dc.date.accessioned2025-03-25T20:17:21Z
dc.date.available2024-06-26T18:48:57Z
dc.date.available2025-03-25T20:17:21Z
dc.date.issued2024-05
dc.identifier.citationRojas-Mayorquín, B. T. (2024). Enhancing Cryptocurrency Transparency. A Graph Neural Network Approach for Bitcoin Address Classification. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.
dc.identifier.urihttps://hdl.handle.net/20.500.12032/158694
dc.description.abstractCryptocurrencies, notably Bitcoin, have catalyzed a significant shift in digital financial systems. The inherent pseudonymity of blockchain complicates efforts towards transparency and security, presenting a crucial problem that this thesis aims to resolve by enhancing address classification. The relevance of this problem lies in the increasing necessity for compliance with global financial regulations and ensuring the integrity of transactions. Addressing this challenge involves overcoming significant difficulties such as the complexity of analyzing vast amounts of transaction data, the need for accurate data preprocessing, and the application of advanced machine learning techniques on non-traditional data structures like graphs. This research utilizes Graph Attention Networks (GATs) to classify Bitcoin addresses, a method chosen for its robustness in handling relational data and its capacity to focus selectively on the most informative parts of the transaction graph. The efficacy of this approach is demonstrated through controlled experiments, where the GATs achieved an accuracy of 92.87%, a precision of 89.35%, a recall of 92.87%, and an F1 score of 90.17%. These results significantly improve upon previous internal benchmarks and confirm the model’s capability to enhance transparency in Bitcoin transactions. Furthermore, this work contributes a novel open-source Extract, Transform, Load (ETL) process tailored for blockchain data, fostering improved analytical transparency, and aiding regulatory and forensic analysis. The findings propose practical applications in financial technology, moving beyond theoretical discourse into actionable insights.
dc.language.isoeng
dc.publisherITESO
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.es
dc.subjectCryptocurrency
dc.subjectBlockchain
dc.subjectBitcoin
dc.subjectGraph Neural Network
dc.subjectFinancial Forensics
dc.titleEnhancing Cryptocurrency Transparency: A Graph Neural Network Approach for Bitcoin Address Classification
dc.typeinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer
ITESO_DMAF_BTRM.pdf947.0Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc/4.0/deed.es
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc/4.0/deed.es

© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP