Show simple item record

dc.contributor.advisorRighi, Rodrigo da Rosa
dc.contributor.authorPolicarpo, Lucas Micol
dc.date.accessioned2023-11-08T13:03:25Z
dc.date.accessioned2024-02-28T18:58:08Z
dc.date.available2023-11-08T13:03:25Z
dc.date.available2024-02-28T18:58:08Z
dc.date.issued2023-08-10
dc.identifier.urihttps://hdl.handle.net/20.500.12032/126603
dc.description.abstractThe integration of artificial intelligence (AI) and machine learning (ML) services in healthcare has revolutionized patient care, ranging from real-time health monitoring to complex medical image analysis. However, deploying these ML services in the context of smart hospitals poses significant challenges due to varying data demands and privacy concerns. Federated Learning (FL) emerges as a promising solution by allowing data to remain with users while training ML models collaboratively. FL ensures data privacy and offers scalability by enabling distributed learning across multiple users. In this research, we extend the FL paradigm to the domain of smart hospitals and propose the "Federated Hospital" model to address the challenges posed by heterogeneity among diferente hospital departments. By leveraging multi-level aggregation, the Federated Hospital architecture is designed to accommodate the diverse demands and health situations within individual departments, providing personalized and accurate ML models for each user. Through extensive experimentation and evaluation in distinct scenarios, including homogeneous and heterogeneous data distributions, we compare the performance of the Federated Hospital model against standard ML and FL approaches. The results confirm the effectiveness of our proposal in terms of accuracy, efficiency, and convergence speed. Moreover, the multi-level aggregation process in the smart hospital architecture enhances model performance, ensuring the generation of tailored ML models specific to each department’s unique characteristics. The Federated Hospital model demonstrates its potential to improve the execution of MLoriented services in smart hospitals. By optimizing the accuracy and performance of ML models for diverse healthcare departments, our proposal aims to revolutionize data-driven decisionmaking, promoting personalized patient care and efficient healthcare services. The next step of this research is to execute Federated Hospital in real hospitals in the metropolitan area of Porto Alegre, Rio Grande do Sul.en
dc.description.sponsorshipNenhumapt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectAprendizado federadopt_BR
dc.subjectFederated learningen
dc.titleFederated hospital: a multilevel federated learning architecture for dealing with heterogeneous data distribution in the context of smart hospitals servicespt_BR
dc.typeDissertaçãopt_BR


Files in this item

FilesSizeFormatView
Lucas Micol Policarpo_PROTEGIDO.pdf1.310Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP