Mostrar el registro sencillo del ítem

dc.contributor.advisorFigueiredo, Rodrigo Marques de
dc.contributor.authorSilva, Fernanda Schäfer Tesch da
dc.date.accessioned2023-10-19T17:46:38Z
dc.date.accessioned2024-02-28T18:57:34Z
dc.date.available2023-10-19T17:46:38Z
dc.date.available2024-02-28T18:57:34Z
dc.date.issued2022-12-02
dc.identifier.urihttps://hdl.handle.net/20.500.12032/126545
dc.description.abstractApproximately 80 million people have glaucoma worldwide. It is estimated that half of them are unaware of their condition. In low and/or middle-income countries, more than 90% of people with glaucoma are still undiagnosed. Among those diagnosed, 35% are already blind. Affordable and effective screening approaches are therefore needed to identify the individuals at risk for vision loss. Widespread use of screening using fundus imaging, with AI-assisted classification, could allow glaucoma to be diagnosed alongside the other leading causes of blindness at low cost. Implementation studies are needed to determine how and where to apply these new tools. Many important research questions remain unresolved and require substantial investment and a concerted global effort to answer. Meeting the current need, the present research proposes to evaluate the application of deep learning methods in the diagnosis of glaucoma. To accomplish it, four existing CNN architectures (InceptionV3, SqueezeNet, VGG16 and VGG19) were applied to approximately 1550 fundus exams, evaluating different image treatments. In the best performance scenario, an accuracy of 0.71014, precision of 0.71019, recall of 0.71014 and F1 score of 0.71012 were observed. As next steps, it is planned to link the training results to other medical data, as well as other imaging tests in order to improve the method.pt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.subjectGlaucomapt_BR
dc.titleEstudo da aplicação de deep learning como auxílio ao diagnóstico de glaucomapt_BR
dc.typeTCCpt_BR


Ficheros en el ítem

FicherosTamañoFormatoVer
Fernanda Schäfer Tesch da Silva.pdf8.336Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP