Mostrar el registro sencillo del ítem

dc.contributor.advisorRigo, Sandro José
dc.contributor.authorAlves, Lucas Gabriel Ferreira
dc.date.accessioned2023-06-01T12:41:53Z
dc.date.accessioned2024-02-28T18:54:46Z
dc.date.available2023-06-01T12:41:53Z
dc.date.available2024-02-28T18:54:46Z
dc.date.issued2022-12-01
dc.identifier.urihttps://hdl.handle.net/20.500.12032/126250
dc.description.abstractApproaches using machine learning are being used to support activities in Geoscience. Among the possible applications, some are aimed at interpreting seismic data in tasks such as identifying features or identifying faults. In particular, this work assists the seismic interpretation and can bring gains by reducing manual work and the time spent studying the geological area. This dissertation describes how a tool capable of selecting points representing geometric sequences in seismic and discontinuities in these sequences can be developed. Thus, in this work, a study of types of deep neural networks in seismic geological data was done. From these works, we have the identification of 2D faults or fractures. Experiments with deep neural network training in seismic were also carried out to serve as the basis for the proposed work. With this study and these experiments, a new network architecture of the encoder-decoder type was proposed and evaluated, making image segmentation identify faults. This architecture is based on DNFS, StNet, and FaultNet networks. The work also generated contributions in producing and annotating a dataset with annotated seismic fault data available for access and used in experiments. Our future steps include fostering solutions to identify faults or critically stressed fractures according to the tension field.en
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languagept_BRpt_BR
dc.publisherUniversidade do Vale do Rio dos Sinospt_BR
dc.rightsopenAccesspt_BR
dc.subjectFalhas geológicaspt_BR
dc.subjectGeology faultsen
dc.titleIdentificação de falhas geológicas em sísmicas usando Redes Neurais Convolucionaispt_BR
dc.typeDissertaçãopt_BR


Ficheros en el ítem

FicherosTamañoFormatoVer
Lucas Gabriel Ferreira Alves_.pdf17.16Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP