Show simple item record

dc.contributor.authorRangel-Patiño, Francisco
dc.contributor.authorViveros-Wacher, Andrés
dc.contributor.authorRayas-Sánchez, José E.
dc.contributor.authorVega-Ochoa, Édgar
dc.contributor.authorShival, Hemanth
dc.contributor.authorRodríguez-Saenz, Sofía
dc.date.accessioned2024-01-25T16:19:48Z
dc.date.accessioned2024-02-27T18:50:58Z
dc.date.available2024-01-25T16:19:48Z
dc.date.available2024-02-27T18:50:58Z
dc.date.issued2023-12
dc.identifier.citationF. Rangel-Patiño, A. Viveros-Wacher, S. Rodríguez-Saenz, J.E. Rayas-Sánchez, E. Vega-Ochoa, and H. Shival, “PCIe Gen6 physical layer equalization tuning by using unsupervised and supervised machine learning techniques,” in IEEE MTT-S Latin America Microwave Conf. (LAMC-2023), San Jose, Costa Rica, Dec. 2023, pp. 105-108.es_MX
dc.identifier.isbn979-8-3503-1641-4
dc.identifier.urihttps://hdl.handle.net/20.500.12032/122655
dc.descriptionEver faster applications triggered the development of the new PCIe Gen6 specification, reaching 64 GT/s data rates with PAM4 modulation. This brings new challenges for the physical channel design, where equalization (EQ) plays a key role. PCIe specification defines an EQ process at the transmitter (Tx) and the receiver (Rx). Current post-silicon validation practices consist of finding optimal subsets of Tx and Rx coefficients by measuring the eye diagram at the Rx across many different channels. However, these practices are very time consuming since they require massive lab measurements. In this paper, we propose machine learning techniques to cluster post-silicon data from different channels and feed those clusters to Gaussian process regression (GPR) models. We then optimize each GPR surrogate to obtain the optimal tuning settings for each identified cluster. Our methodology is validated by using MATLAB SerDes Toolbox simulations of the functional eye diagram of a Gen6 link.es_MX
dc.description.sponsorshipITESO, A.C.es_MX
dc.language.isoenges_MX
dc.publisherIEEEes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdfes_MX
dc.subjectClusteringes_MX
dc.subjectEqualizationes_MX
dc.subjectEqualization Mapses_MX
dc.subjectEye-diagrames_MX
dc.subjectFIRes_MX
dc.subjectGPRes_MX
dc.subjectHSIOes_MX
dc.subjectHigh-speed Linkses_MX
dc.subjectMetamodelses_MX
dc.subjectOptimizationes_MX
dc.subjectPCIees_MX
dc.subjectPost-silicon Validationes_MX
dc.subjectReceiveres_MX
dc.subjectSignal Integrityes_MX
dc.subjectTransmitteres_MX
dc.subjectTuninges_MX
dc.titlePCIe Gen6 physical layer equalization tuning by using unsupervised and supervised machine learning techniqueses_MX
dc.typeinfo:eu-repo/semantics/articlees_MX


Files in this item

FilesSizeFormatView
Rangel_23Dec_PCIe_Gen6_Phy_Eq_by_ML_author_ver.pdf1.055Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP