Mostrar registro simples

dc.contributor.advisorAlcalá-Temores, Jaime E.
dc.contributor.authorManzo-Rosas, Carlos A.
dc.date.accessioned2024-02-10T02:27:44Z
dc.date.accessioned2024-02-27T18:50:31Z
dc.date.available2024-02-10T02:27:44Z
dc.date.available2024-02-27T18:50:31Z
dc.date.issued2024-01
dc.identifier.citationManzo-Rosas, C. A. (2024). Aprendizaje profundo en el caucho. Mejora del proceso de manufactura mediante la predicción de propiedades. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/20.500.12032/122505
dc.descriptionA brief introduction to the project of implementation of deep learning models in rubber manufacturing processes is presented. The main objective of this project is to use machine learning models, specifically neural networks, with existing information and data from rubber manufacturing processes, solving, in particular, the quality control of products for sale. Raw material and process data from PTE Compounding of Mexico were used to elaborate several neural network models, presenting the best iteration obtained from hundreds of tests and variations for the given conditions and configurations. With this, models 6 and 8 had the best result obtained by minimizing its cost functions, MSE (mean squared error), and MAE (mean absolute error). In addition to the model metrics, it was also sought to predict new quality attribute values with new product data obtained during the development of this project. These model predictions were compared with actual results. Finally, with the results obtained, it is concluded that the proposed approach of neural network models for rubber manufacturing seems to be heading in the right direction, considering the complexity of the interactions in daily practice.es_MX
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectDeep Learninges_MX
dc.subjectNeural Networkses_MX
dc.subjectRubberes_MX
dc.subjectManufacturinges_MX
dc.subjectQuality Controles_MX
dc.subjectPredictiones_MX
dc.titleAprendizaje profundo en el caucho. Mejora del proceso de manufactura mediante la predicción de propiedadeses_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX


Arquivos deste item

ArquivosTamanhoFormatoVisualização
TOG - Carlos Manzo.pdf1.932Mbapplication/pdfVisualizar/Abrir

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP