Mostrar registro simples

dc.contributor.authorDE LIMA MORETO, R. A.
dc.contributor.authorMARIANO A.
dc.contributor.authorTHOMAZ, C. E.
dc.contributor.authorSalvador Gimenez
dc.date.accessioned2022-01-12T21:54:36Z
dc.date.accessioned2024-02-27T16:29:43Z
dc.date.available2022-01-12T21:54:36Z
dc.date.available2024-02-27T16:29:43Z
dc.date.issued2021-01-05
dc.identifier.citationDE LIMA MORETO, R. A.; MARIANO A.; THOMAZ, C. E.; GIMENEZ, S. Optimization of a low noise amplifier with two technology nodes using an interactive evolutionary approach. Analog Integrated Circuits and Signal Processing, v. 106, n. 1, p. 307-319, Jan. 2021.
dc.identifier.issn1573-1979
dc.identifier.urihttps://hdl.handle.net/20.500.12032/122141
dc.description.abstract© 2021, Springer Science+Business Media, LLC, part of Springer Nature.Nowadays, wireless communications at frequencies of gigahertz have an increasing demand due to the ever-increasing number of electronic devices that uses this type of communication. However, the design of Radio Frequency (RF) circuits is difficult, time-consuming and based on designer knowledge and experience. This work proposes an interactive evolutionary approach based on genetic algorithm, implemented in the in-house iMTGSPICE optimization tool, to perform the optimization process of a Low-Power Low Noise Amplifier (LNA) dedicated to Wireless Sensor Networks (WSN), which is robust through the corner and Monte Carlo analyses and implemented in two Bulk CMOS technology nodes: 130 nm and 65 nm. Regarding each technology node, we performed two experimental studies to optimize the LNA. The first one used the conventional non-interactive approach of iMTGSPICE, which was not assisted by a designer during the optimization process. The second one used the interactive approach of iMTGSPICE, which was monitored and assisted by a beginner designer during the optimization process. The obtained results demonstrated that the interactive approach of iMTGSPICE performed the optimization process of the robust LNA from 16 to 94% faster than the non-interactive evolutionary approach. The design regarding the technology node of 130 nm took 341 min for the non-interactive and 20 min for the interactive optimization process, whereas the design in the 65 nm took 537 min for the non-interactive and 454 min for the interactive approach.
dc.relation.ispartofAnalog Integrated Circuits and Signal Processing
dc.rightsAcesso Restrito
dc.titleOptimization of a low noise amplifier with two technology nodes using an interactive evolutionary approach
dc.typeArtigo


Arquivos deste item

ArquivosTamanhoFormatoVisualização

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples


© AUSJAL 2022

Asociación de Universidades Confiadas a la Compañía de Jesús en América Latina, AUSJAL
Av. Santa Teresa de Jesús Edif. Cerpe, Piso 2, Oficina AUSJAL Urb.
La Castellana, Chacao (1060) Caracas - Venezuela
Tel/Fax (+58-212)-266-13-41 /(+58-212)-266-85-62

Nuestras redes sociales

facebook Facebook

twitter Twitter

youtube Youtube

Asociaciones Jesuitas en el mundo
Ausjal en el mundo AJCU AUSJAL JESAM JCEP JCS JCAP